期刊文献+

弱连通传递框架类的命题逻辑

The Propositional Logic of Weakly Connected Transitive Kripke Frames
下载PDF
导出
摘要 在维瑟(Albert Visser)的基本命题逻辑(BPL)基础上增加公理(p→q)∨((p→q)→p)得到的逻辑LB相对于弱连通传递框架类是完全的。增加达米特(M.Dummett)公理(p→q)∨(q→p)得到的逻辑LD是不完全的。本文还证明LB具有有穷模型性质,但是不具有两常元性质和析取性质。 The logic LB is obtained from Visser's basic propositional logic by adding the axiom (p → q) V ((p → q) → p). This logic is complete with respect to the class of all weakly connected transitive frames. But the logic LD which is obtained from BPL by adding the Dummett formula (p → q) V (q → p) is not complete. The logic LB has finite model property but no two constant property and no disjunction property.
出处 《逻辑学研究》 CSSCI 2013年第4期17-29,共13页 Studies in Logic
基金 国家社科基金青年项目"模态可定义性理论研究"(12CZX054)
  • 相关文献

参考文献9

  • 1M. Alizadeh and M. Ardeshir, 2004, "On the linear Lindenbaum algebra of basic propo- sitional logic", Mathematical Logic Quarterly, 50(1): 65-70.
  • 2A. Chagrov and M. Zakharyaschev, 1997, Modal Logic, Oxford: Clarendon Press.
  • 3M. Dummett, 1959, "A propositional calculus with denumerable matrix", The Journal of Symbolic Logic, 24(2): 97-106.
  • 4K. Fine, 1974, "An incomplete logic containing S4, Theoria, 40(1): 23-29.
  • 5K. Godel, 1933, "An interpretation of the intuitionistic propositional calculus", in S. Feferman (ed.), Kurt G~idel: Collected Works Vol. I Publication 1929-1936, pp. 296- 303, Oxford: Oxford University Press.
  • 6W. Ruitenburg, 1991, "Constructive logic and the paradoxes", Modern Logic, 1: 271- 301.
  • 7Y. Suzuki, 1999, Nonmodal Propositional Language on Transitive Frame and Their Embedding, Ph.D thesis, Japan Advanced Institute of Science and Technology.
  • 8Y. Suzuki and H. Ono, 1997, "Hilbert style proof system for BPL", Technical Report, IS-RR-97-0040F: 1-8, Japan Advanced Institute of Science and Technology.
  • 9A. Visser, 1981, "A propositional logic with explicit fixed points", Studia Logica, 40: 155-175.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部