摘要
通过Hadamard积定义了一个分式算子,并利用分式算子A得到了单位开圆内具有负系数的一致凸函数类的新子类f(z)=z+∑∞n=2a n zn.研究了新子类U={z:|z|<1}的卷积性质和在积分变换Vλ(f)的作用下新子类的特征性质.
Making use of a linear operator Iλ,μ ,which is defined here by means of a Hadamard product ,we intro-duce a new class TS (λ,μ,α) of uniformly convex functions with negative coefficients defined by using a certain fractional calculus operator Iλ,μ .In this paper ,we discuss the convolution property of the class TS (λ,μ,α) and integrals transform is discussed.
出处
《淮阴师范学院学报(自然科学版)》
CAS
2013年第3期199-203,共5页
Journal of Huaiyin Teachers College;Natural Science Edition
关键词
解析函数
一致凸
分式算子
卷积
积分变换
analytic functions
uniformly convex
hadamard product
integrals transform