期刊文献+

交流伺服系统的一种PIλDμ控制器设计方法 被引量:5

A Method of Designing PIλDμ Controller for AC Servo System
下载PDF
导出
摘要 针对交流伺服系统,建立了数学模型,并设计了一种分数阶PIλDμ控制器设计。在利用传统PID参数整定方法确定比例增益k p、积分增益k i和微分增益k d的基础上,结合相位裕度定义,在相位裕度和截止频率给定的情况下完成积分阶次λ和微分阶次μ的设计。在求解积分阶次成λ和微分阶次μ时,采用一种简单易行的图解方法,巧妙地将求解一组非线性方程的问题转化为绘制两曲线求交点的问题。仿真结果表明,相对于传统PID控制器,本文设计的PIλDμ控制器,跟踪响应快,抗干扰能力强,鲁棒性好。 The mathematical model of AC servo system is built,and a method of designing fractional order PIλDμ controller is proposed for AC servo system. On the basis of the proportional gain kp,integral gain ki and derivative gain kd are obtained by using the classical PID tuning method. The fractional order of integrator A and fractional order of differentiator/x with the given phase margin and gain crossover frequency are given with combination of the phase margin specification. A graphical method is used when the fractional order of integrator A and fractional order of differentiator μ are obtained, and the method transforms the problem of solving a set of nonlinear equations into finding the intersection point of two graphs. The simulation results show that the proposed method has faster re- sponse, stronger anti-interference and better robustness than the classical PID controller.
机构地区 太原科技大学
出处 《太原科技大学学报》 2013年第6期406-409,共4页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金项目(2012011027-4) 太原科技大学研究生科技创新项目(20125013) 太原科技大学青年基金(20123006)
关键词 交流伺服系统 分数阶PIλDμ 相位裕度 鲁棒性 AC servo system, fractional order PIλDμ, phase margin, robustness
  • 相关文献

参考文献10

  • 1PODLUBNY I. Fractional-order systems and PID-controllers [ J]. IEEE Transaction on Automatic Control, 1999,44 (1): 208-214.
  • 2薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:163
  • 3DUARTE VALRRIO,JOSE SA DA COSTA. Tuning of fractional laiD controllers with Ziegler-Nichols-type rules[ J]. Signal Pro- cessing, 2006,86 (10) : 2771-2784.
  • 4TRIPTI BHASKARAN,YANGQUAN CHEN, DINGYU XUE. Practical tuning of fractional order proportional and integral con- troller (I) :tuning rule development [ C ]//Proc. of the ASME 2007 international design engineering technical conferences & computers and information in engineering conference, Las Vegas, Nevada, USA,2007 : 1-14.
  • 5BARBOSA RANIRO S,TENREIRO MACHADO J. A,JESUS ISABEL S. On the fractional PID control of a laboratory servo system [ C ]//Proc. of the 17^th World Congress the International Federation of Automatic Control, Seoul, Korea,2008 : 15373-15378.
  • 6BARBOSA RANIRO S,TENREIRO MACHADO J. A, JESUS ISABEL S. Effect of fractional order in velocity control of a servo system [ J ]. Computers and Mathematics with Applications. 2010,59 (5) : 1679-1686.
  • 7IVO PETRAS. Fractional-order feedback control of a DC motor[ J]. Journal of electrical engineering,2009,60 (3) :117-128.
  • 8MONJE C A, VINAGRE B M, YANGQUAN C HEN. Proposals for fractional PID-tuning[ C ] //Proc, of the 1 st IFAC Symposium on Fractional Differentiation and Its Applications, Bordeaux, France ,2004 : 1-6.
  • 9赵志诚,贾彦斌,张井岗.交流伺服系统模糊内模PID控制器设计[J].火力与指挥控制,2008,33(11):144-146. 被引量:11
  • 10刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社,2011.

二级参考文献19

  • 1高扬,杨明,于泳,徐殿国.基于扰动观测器的PMSM交流伺服系统低速控制[J].中国电机工程学报,2005,25(22):125-129. 被引量:43
  • 2Chiang H K ,Tseng C H. Design and Implementation of a Gray Sliding Mode Controller for Synchronous Reluctance Motor Drive [J]. Control Engineering Practice, 2004,12(12) : 155-163.
  • 3Qing G W,Qiang B,Yong Z. Partial Internal Model Control [J]. IEEE Transactions On Industrial Electronics, 2001,48(5):976-982.
  • 4诸静.模糊控制原理及其应用[M].北京:机械工业出版社,1999.
  • 5RICBARD L. Magin. Fractional calculus in bioengineering[J]. Critical Reviews in Biomedical Engineering, 2004, 32(1): 1 - 193.
  • 6PODLUBNY I. Fractional-order systems and PI^λD^μ-controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1): 208 -214.
  • 7LV Z F. Time-domain simulation and design of siso feedback control systems[D]. Taiwan: National Cheng kung University, 2004.
  • 8CAPONTTO R, FORTUNA L, PORTO D. A new tuning strategy for a non integer order pid controller[C]//IFAC2004, Bordeaux, France: [s.n.], 2004.
  • 9MONJE C A, VINAGRE B M, CHEN Y Q, et al. Proposals for fractional PI^λD^μ tuning[C]//The First IFAC Symposium on Fractional. Bordeaux, France: [s.n], 2004.
  • 10MAC B, HORI Y. Design of fractional order pid controller for robust two-inertia speed control to torque saturation and load inertia variation[C]//IPEMC. Xi'an, China: [s.n.], 2003.

共引文献210

同被引文献44

  • 1范岩.多电机同步控制策略的改进[J].机电工程,2007,24(6):65-66. 被引量:18
  • 2薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:163
  • 3李英顺,赵春娜,陆涛.分数阶先进控制系统研究与应用[M].北京:北京师范大学出版社,2012.
  • 4XUE D Y,CHEN Y Q. A comparative introduction of four fractional order controllers[ C]//Proc of the 4th World Congress on Intelligent Control and Automation,Shanghai ,2002:3228-3235.
  • 5LUO Y, CHEN Y Q. Fractional order [ proportional derivative] controller for a class of fractional order systems [ J ]. Automati- ca, 2009,45 (10) : 2446 -2450.
  • 6CHEN D Y,ZHANG R F, Sprott J C, et al. Synchronization between integer-order chaotic systems and fractional-order chaotic systems via sliding mode control [ J ]. Choas, 2012 ( 22 ) : 1-9.
  • 7LI Y, CHEN Y Q, PODLUBNY I. Mittag-Leffler stability of fractional order nonlinear dynamic systems [ J ]. Automatica,2009, 45 : 1965-1969.
  • 8YIN C, ZHONG S M, CHEN W F. Design of sliding mode controller for a class of fractional-order chaotic systems [ J ]. Commun Nonlinear Sci Numer Simulat ,2012,17:356-366.
  • 9ZHANG BITAO,PI YOUGUO, LUO YING. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor[ J]. ISA Transactions ,2012,51:649-656.
  • 10OLDHAM K B. Fractional differential equations in electro-chemistry[ J]. Advances in Engineering Software,2010,41 ( 1 ) :9-12.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部