期刊文献+

一类多时滞微分方程的周期正解

Periodic Positive Solutions for a Class of Functional Time-lag Differential Equations
下载PDF
导出
摘要 时滞微分方程的研究和发展无论是理论上还是应用上都具有重要的意义。特别地,时滞微分方程的周期解存在性问题是一个有重要意义的研究课题,受到国内外学者的广泛关注。利用Krasnoselskii不动点定理,给出了一类多时滞微分方程ω-周期正解存在性的充分条件,推广了已有文献中的相应结果。 Research and development of time-lag differential equation are of great significance both in theory and applications. Especially, the existence of periodic solutions of time-lag differential equation has become an important research topic, and received extensive attention from scholars at home and abroad. Krasnoselskii fixed-point theorem was used to obtain the sufficient conditions so as to ensure the existence of positive periodic solutions to the follow- ing delay differential equation, which extended the fruits in the existing literatures.
作者 荆素风
出处 《太原科技大学学报》 2013年第6期461-464,共4页 Journal of Taiyuan University of Science and Technology
关键词 时滞微分方程 周期正解 KRASNOSELSKII不动点定理 delay differential equation,positive periodic solutions, Krasnoselskii fixed-point theorem
  • 相关文献

参考文献5

  • 1刘炳文,黄立宏.一类一阶中立型泛函微分方程周期解的存在与唯一性[J].数学学报(中文版),2006,49(6):1347-1354. 被引量:10
  • 2LIU GUIRONG, YAN JURANG, ZHANG FENGQIN. Existence and global attractivity of unique positive periodic solution for a model of hematopoiesis[J].J Math Anal Appl,2007,334 : 157-171.
  • 3ZHANG GUANG, CI-IENG S. Positive periodic solutions of nonautonomous functional differential equations depending on a pa- rameter [ J ]. Abstract Appl Anal, 2002 ( 7 ) : 279-286.
  • 4WANG HAIYAN. Positive periodic solutions of functional differential equations [ J ]. J Differential Equations, 2004, 202: 354-366.
  • 5DEIMLING M. Nonlinear Functional Analysis [ M ]. NewYork: Springer-Verlag, 1985.

二级参考文献12

  • 1Komanovskli V. B., Nosov V. R., Stability of functional differential equations, London: Academic.Press, 1986.
  • 2Yang K., Delay differential equations with applications in population dynamical system, New York: Academic Press, 1993.
  • 3Burton T. A., Stability and periodic solution of ordinary and functional differential equations, Orland: Academic Press, FL. 1985.
  • 4Gaines R. E., Mawhin J., Coincide degree and nonlinear differential equations, Lecture Notes in Math., 568,Spring-Verlag, 1977.
  • 5Hale J. K., Theory of functional differential equations, New York: Spring, 1977.
  • 6Hale J. K., Mawhin J., Coincide degree and periodic solutions of neutral equations, J. Differential Equations,1975, 15:295-307 .
  • 7Lu S.P., Ge W. G., On existence of periodic solutions for neutral differential equation, Nonlinear Analysis,2003, 54: 1285-1306.
  • 8Zhang M. B,., Periodic solutions of linear and quasilinear neutral functional differential equations, J. Math.Anal. Appl., 1995, 189: 378-392.
  • 9Liu B. W., Huang L. H., Periodic solutions for some delay differential equations appearing in a power system,Annales Polonici Mathematici, 2005, 86(2): 153-164.
  • 10Hardy G. H., Littlewood J. E. and Polya G., Inequalities, London: Cambridge Univ. Press, 1964.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部