期刊文献+

一种基于成分数据的修正EM算法 被引量:5

A Modified EM Algorithms Based on Compositional Data
下载PDF
导出
摘要 针对成分数据中的零值或近似零值,导致对成分数据作对数比变换后出现了缺失数据的现象,提出了一种基于均值插补法的修正EM算法来估计变换后的缺失数据.该方法首先对缺失数据所在列中的数据用Bootstrap方法反复抽样,然后用抽样得到的样本均值作为EM算法的初始值来估计缺失数据,最后将缺失数据的估计值代入对数比变换的逆变换求得原始成分数据零值的近似估计.实验结果表明:在误差允许的范围内,基于均值插补法的修正EM算法计算量少,操作简单,因此对于数据量大或者缺失率高的数据不失为一个好的插补法. A new method, a modified EM algorithm based on the mean interpolation method, was proposed to estimate the missing data, which was caused by the zeros or rounded zeros in compositional after the log-ration transformation. This method first used a Bootstrap sampling technique in the data of the columns which con- tained missing data. Then missing data were estimated by applying the EM Algorithm with the mean of the samples as its initial value. Finally original zeros were estimated in compositional dada using the inverse trans- formation of log-ration transformation into the estimation of missing data. The experimental results illustrate that modified EM algorithms based on the mean interpolation has less computation and simple operation. So it can be considered as a good imputation method when the size of sample or the rate of missing is large.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第5期485-487,499,共4页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金重点项目(71031006 41101440) 山西省青年科技基金资助项目(201202105-1)
关键词 成分数据 回归 BOOTSTRAP方法 均值插补法 EM算法 compositional data regression Bootstrap method mean interpolation method EM algorithm
  • 相关文献

参考文献7

  • 1Aitchison J. The Statistical Analysis of Compositional Da- ta[M]. London: Chapman And Hall, 1986.
  • 2Aitchison J, Kay J W. Possible solutions of some essential zero problems in compositional data analysis[ C]. Compo- sitional Data Analysis Workshop, 2004 : 15-17.
  • 3Little R J A, Rubin I3 D B. Statistical Analysis with Mi- ssing Data[M]. John Wiley & Sons Inc, 2002.
  • 4Hijazi R. An EM-algorithm based method to deal with rounded zeros in compositional data under dirichlet models [C]. Proceedings of the 4th International Workshop on Compositional DataAnalysis, 2011.
  • 5常王华,张晓琴.基于Bootstrap方法上的新修正EM算法[J].太原师范学院学报(自然科学版),2012,11(4):65-67. 被引量:1
  • 6Palarea-Albaladejo J, Martin-Fernandez J A. A mod-ified EM air-algorithm for replacing rounded zeros in composi- tional data sets[J]. Compute & Geosciences, 2008, 34: 902-917.
  • 7Palarea-Albaladejo J, Martin-Fernandez J A, Gomez- Garcia J. A parametric approach for dealing with compo- sitional rounded zeros [ J ]. Math. Geol. , 2007, 39: 625-645.

二级参考文献5

  • 1Aitchison J. The Statistical analysis of compositional data[M]. London:Chapman and Hall, 1986.
  • 2Wang Huiwen, Liu Qiang,KHenry M,et aL A hyperspherical transformation forecasting model for compositional data[J]. Eu- ropean Journal of Operational Research, 2007,179 : 459-468.
  • 3Palarea Albaladejo J,Martin Fernandez J A. A modified EM air-algorithm for replacing rounded zeros in compositional data sets[J]. Compute:Geoscienees, 2008,34 : 902-917.
  • 4Terence C Mills. Forecasting compositional time series[J]. Qual Quant, 2010,44:673-690.
  • 5菅小艳.基于不完整数据的EM算法初值选取[J].太原师范学院学报(自然科学版),2010,9(1):79-81. 被引量:3

同被引文献27

  • 1MUKHOPADHYAY A, MAULIK U, BANDYOPADHYAY S, et al. Survey of multi-objective evolutionary algorithms for data mining: part II [J]. IEEE transactions on evolutionary computation, 2014, 18(1): 20-35.
  • 2MUTEKI K, MACGREGOR J, UEDA T. Estimation of missing data using latent variable methods with auxiliary information [J]. Chemometrics and intelligent laboratory systems, 2005, 78(1): 41-50.
  • 3FAN J, GIJBELS I. Variable bandwidth and local linear regression smoothers [J]. The annals of statistics, 1992, 20(4): 2008-2036.
  • 4COVER T, HART P. Nearest neighbor pattern classification [J]. IEEE transactions on information theory, 1967, 13(1): 21-27.
  • 5XIANG S, NIE F, PAN C, et al. Regression reformulations of LLE and LTSA with locally linear transformation [J]. IEEE transactions on systems, man, and cybernetics, part B: cybernetics, 2011, 41(5): 1250-1262.
  • 6YIN S, DING S, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. Journal of process control, 2012, 22(9): 1567-1581.
  • 7RICKER N. Decentralized control of the Tennessee Eastman challenge process [J]. Journal of process control, 1996, 6(4): 205-221.
  • 8STTUBBS S, ZHANG J, MORRIS J. Multiway interval partial least squares for batch process performance monitoring [J]. Industrial & engineering chemistry research, 2013, 52(35): 12399-12407.
  • 9WANG X, HU Z, FENG J, et al. Mean-shift tracking algorithm based on Kalman filter using adaptive window and sub-blocking [C]// WCICA 2014: Proceedings of the 2014 11th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE, 2014: 5438-5443.
  • 10徐昕,袁卫,孟生旺.零膨胀广义泊松回归模型与保险费率厘定[J].数学的实践与认识,2009,39(24):99-107. 被引量:18

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部