期刊文献+

圈和路的笛卡尔积的H-强迫数

The H-Force Number of the Cartesian Product of a Cycle with a Path
下载PDF
导出
摘要 通过研究笛卡尔积的定义得到了圈和路作笛卡尔积后得到的图形,探讨了所得图形的H-强迫集与H-强迫数问题.利用寻找非哈密尔顿圈的方法证明了主要结论:设Ck表示k个顶点的圈,Pl表示l个顶点的路,G=Ck×Pl表示Ck与Pl的笛卡尔积.则当k为偶数时,图G的H-强迫数为kl2;当k为奇数时,图G的H-强迫数为kl. The Cartesian product of a cycle with a path was obtained by the definition of Cartesian product. An exploration was made on the H-force set and H-force number of these graphs. By using the method of searching non-hamiltonian cycle, the conclusion is proved: Let Ca be a cycle of order k, P1 be a path of order kl l. G = Ck × Pt is the Cartesian product of Ca and Pt. Then the H-force number of G is k- when k is even and the H-force number of G is kl when k is odd
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第5期500-503,共4页 Journal of North University of China(Natural Science Edition)
基金 山西省青年科技研究基金资助(2013021001-5) 山西省回国留学人员科研资助项目(2013-017) 国家自然科学基金资助项目(61174082)
关键词 笛卡尔积 H-强迫集 H-强迫数 cycle path Cartesian product H-force set H-force number
  • 相关文献

参考文献9

  • 1Fabrici I, Hexel E, Jendrol S. On vertices enforcing a Hamiltonian cycle [ J ]. Diseussiones Mathematicae, Graph Theory, 2013, 33: 71-89.
  • 2Zhang Xinhong, Li Ruijuan, Li Shengjia. H-force sets of locally semicomplete digraphs[J~. Discrete Applied Mathe matics, 2012, 160. 2491-2496.
  • 3Faudree R J, Schelp R H, Saito A, et al. Degree conditions for hamiltonicity: Counting the number of missing edges [ J ]. Discrete Mathematics, 2007, 307: 873-877.
  • 4Gould R J. Advances on the Hamiltonian problem-A survey[J]. Graphs and Combin. , 2003, 19: 7-52.
  • 5Gould R J. Updating the Hamiltonian problem-A survey [J]. J. Graph Theory, 1991, 15: 121-157.
  • 6Li Shengjia, Li Ruijuan, Feng Jinfeng. The graphs satisfying conditions of Ore' s type [J ]. Australas. J. Combin. , 2007, 37: 27-32.
  • 7Li Shengjia, Li Ruijuan, Feng Jinfeng. An effcient condition for a graph to be Hamiltonian [ J 1. Discrete Appl. Math., 2007, 155: 1842-1845.
  • 8Xu Junming, Yang Chao. Connectivity of cartesian product graphs[J].Discrete Mathematics, 2006, 306: 159-165.
  • 9Bondy J A, Murty U S R. Graph Theory[M]. New York: Springer, 2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部