期刊文献+

正则4-部竞赛图泛圈的一个充分条件

A Sufficient Condition for a Regular 4-Partite Tournament to be Pancyclic
下载PDF
导出
摘要 研究了正则4-部竞赛图的泛圈性问题.将找原图中某一长度的圈归结为找某个子图的哈密尔顿圈,利用有向图的哈密尔顿圈理论,并结合有向图中圈可归约的概念及性质,给出了正则4-部竞赛图泛圈的一个充分条件,得出了:设D是一个正则4-部竞赛图,V1,V2,V3,V4是D的部集且︱Vi︱=vD*≥8(i=1,2,3,4),如果对每个1≤i≤4来说,Vi-1控制Vi中至少「VD*/4(V0=V4)个顶点,则D是泛圈的. The pancyclicity of regular 4-partite tournaments was investigated. To seek for a cycle with certain length in original-digraph was reduced to find a Hamilton cycle of some sub-digraph. Using Hamilton theories of digraphs and combining the notion and properties of reduction, a sufficient condition for a regular 4-partite tournament to be pancyclic was obtained and the following result is proved: Let D be a regular 4-partite tour- nament with partite sets V1,Vz,V3,V4 and |Vi| = v;) ≥8(i = 1,2,3,4). If Vi-1 dominates at least 4-VD* vertices in Vi(1≤i≤4, V0=V4), then D is pancyclic.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第5期520-523,共4页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金(青年)资助项目(11201273 61202365 61202017) 山西省青年科技基金资助项目(2011021004) 山西省回国留学人员科研资助项目(2013-017)
关键词 4-部竞赛图 正则 泛圈性 4-partite tournaments regular cycle pancyclicity
  • 相关文献

参考文献13

  • 1Moon J. On subtournaments of a tournament[J ]. Canad. Math. Bull., 1966(9): 297-301.
  • 2Gutin G. Characterizations of vertex pancyclic and pan- cyclic ordinary complete multipartite digraphs [J ]. Dis- crete Math., 1995, 141: 153-162.
  • 3Song Zengmin. Pancyclic ortiented graphs [ J ]. J. Graph Theory, 1994, 18: 461-468.
  • 4Volkmann L. Cycles in multipartite tournaments: results and problems[Jl. Discrete Math., 2002, 245: 19-53.
  • 5Yeo A. Diregular c-partite tournaments are vertex-pan- cyclic when c≥5[J]. J. Graph Theory, 1999, 32. 137- 152.
  • 6Yeo A. Paths and cycles containing given arcs, in close to regular mutipartite tournaments[J]. J. Combin. Theory Ser. B, 2007, 97: 949-963.
  • 7Bondy J. Diconnected orientation and a conjecture of Las Vergnas[J]. J. London Math. Soc., 1976, 14: 277- 282.
  • 8Bang-Jensen J, Guo Yubao. A note on vertex pancyclic ortiented graphs[J]. J. Graph Theory, 1999, 31: 313- 318.
  • 9Guo Yubao, Volkmann L. Cycles in multipartite tourna- ments[J]. J. Combin. Theory Ser. B, 1994, 62: 363- 366.
  • 10Guo Yubao, Volkmann L. Extendable cycles in semi- complete multipartite digraphs [ J ]. Graphs Combin. , 2004, 20. 185-190.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部