期刊文献+

多值非扩张映射的广义混合平衡问题的不动点解

Fixed Point Solutions of Generalized Mixed Equilibrium Problems for Multi-Valued Non-Expansive Mappings
下载PDF
导出
摘要 引入了多值非扩张映射的概念,研究了多值非扩张映射的不动点集与广义混合平衡问题的公共点问题.利用不动点理论,在巴拿赫空间中构造了一种迭代算法.利用最佳逼近方法和度量投影方法,证明了此算法强收敛到多值非扩张映射的不动点集与广义混合平衡问题的公共点,并且推广了以前的结论. The concept of multi-valued non-expansive mappings was introduced, the fixed point set of multi- valued non-expansive mappings and the common point problem of generalized mixed equilibrium problems were studied. An iterative scheme was constructed by using the fixed point theory in Banach space. It is proved that the scheme is strong convergence to the fixed point set of multi-valued non-expansive mappings and the common point of generalized mixed equilibrium problems and the scheme generalizes the previous con- clusion by using the best approximation method and measure the projection method.
作者 陈丫丫 王光
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第5期555-559,共5页 Journal of North University of China(Natural Science Edition)
关键词 多值非扩张映射 广义混合平衡问题 变分不等式 HAUSDORFF度量 multi-valued non-expansive mappings generalized mixed equilibrium problems variational inequality problems fixed points Hausdorff distance
  • 相关文献

参考文献10

  • 1Jung J S. Strong convergence of composite iterative meth- ods for equilibrium problems and fixed point problems[J ]. Appl. Math. Comput., 2009, 213: 498-505.
  • 2Marino G, Xu H K. A general iterative method for non- expansive mappings in hilbert spaces[J]. J. Math. Anal. Appl., 2006, 318(1): 43-52.
  • 3Shehu Y. Fixed point solutions of generalized equilibrium problems for nonexpansive mappings [ J ]. J. Math. Comp. Appl., 2010, 234(3): 892-898.
  • 4Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert spaces [J ]. J. Math. Anal. Appl., 1967, 20(2): 197-228.
  • 5Blum E, Oettli W. From optimization and variational in- equilities to equilibrium problems [ J ]. Math. Student, 1994, 63: 123-145.
  • 6Browder F E. Nonlinear monotone operators and convex sets in Banach spaces [J ]. Bull. Amer. Math. Soc., 1965, 71(5): 780-785.
  • 7Peng J W, Yao J C. A new hybrid-extragradient method for generalized mixed equilibrium problem and fixed point problems and variational inequality problems[ J ]. J. Tai- wan Math., 2008, 12(6): 1401-1433.
  • 8Xu H K. Inequalities in banach spaces with applications [J]. Nonlinear Anal. , 1991, 16(12): 1127-1138.
  • 9Takahashi S, Takahashi W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space[J]. Nonlinear Anal., 2008, 69(13) : 1025-1033.
  • 10朱寿国.广义混合平衡问题和不动点问题的公共元的混杂算法[J].成都信息工程学院学报,2011,26(4):388-393. 被引量:1

二级参考文献8

  • 1Goebel K,Kirk WA.A fixed point theorem for asymptotically nonexpansive mappingsProceedings of the American Mathematical Society,1972.
  • 2W. A. Kirk.Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type[J]Israel Journal of Mathematics,1974(4).
  • 3Bruck R E,,Kuczumow T,Reich S.Convergence of iterates of asymptotically nonexpansive in Banach spaceswith the uniform Opial propertyColloqMath,1993.
  • 4Dehghan H,Gharajelo A,Afkhamitaba D.Approximating fixed points of non-Lipschitzian mappings by metricprojectionsFixed point Theory and Applications,2011.
  • 5Kamraksa U,Wangkeeree R.Existence and iterative approximation for generalized equilibrium problem for acountable family of nonexpansive mapping in Banach spacesFixed point Theory and Applications,2011.
  • 6Oka H.An Ergodic for asymptotically nonexpansive mapping in the intermediate senseProceedings oftheAmerican Mathematical Society,1997.
  • 7Zeidler E.Nonlinear Functional Analysis and its Application I: Fixed -Point Theorems,1986.
  • 8TakahashiWNonlinear Functional Analysis.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部