摘要
为有效确定概率积分法预计参数,提高预计值的精度。将粒子群优化(PSO)算法和BP神经网络进行融合,采用改进的混合粒子群优化算法优化神经网络的权值和阈值。在分析概率积分法参数与地质采矿条件之间关系的基础上,建立了基于PSO优化BP神经网络的概率积分法预计参数的优化选择模型。以我国典型的地表移动观测站资料作为网络的学习训练样本和测试样本,将计算结果与实际值进行了对比分析,并与改进BP算法的计算结果进行了比较。结果表明,PSO-BP神经网络方法用于概率积分法预计参数的选取是可行的,收敛速度更快,计算精度更高。
In order to effectively determine the prediction parameters of probability-integral method and to improve the prediction accuracy, a new method by combining Particle Swarm Optimization (PSO) algorithm and BP neural network (PSO-BP) was presented. In this method, an improved hybrid PSO algorithm was used to optimize the connection weights and thresholds values of BP neural network. An optimization model for prediction parameters of probability-integral method using this hybrid PSO-BP neural network algorithm was constructed based on analyzing the relationship between the parameters and geological mining conditions. Typical data of surface moving observation stations was used as learning and test samples. Analysis was made by comparing calculated values, observed values, and values of improved BP neural network. Results indicate that PSO-BP calculation model has higher con- vergence speed and higher precision.
出处
《采矿与安全工程学报》
EI
北大核心
2013年第3期385-389,共5页
Journal of Mining & Safety Engineering
基金
国家自然科学基金项目(51174206)
江苏高校优势学科建设工程项目
关键词
地表移动
概率积分法
粒子群优化算法
BP神经网络
优化选择
surface movement
probability-integral method
particle swarm optimization algorithm
BP neural network
optimal selection