期刊文献+

基于优化模型的广义最小二乘法及其应用 被引量:4

Generalized Least Square Method and Applications Based on Optimization Model
下载PDF
导出
摘要 最小二乘法问题常常用来处理曲线拟合问题,在此我们采用优化模型处理最小二乘法下的曲线拟合问题,分别建立单目标规划和多目标规划两个模型,对此问题进行探讨,并通过实例给出三种模型下的结果分析。 Least squqre method is used to solve curvet fitting problems. This paper resolves a curvet fitting problem for least squre method by an optimization model. We build a single objective programming model and a multi-objective one, and angalyze these models insightly. We give analysis of the results for three models through numerical examples.
作者 徐屹
出处 《东北电力大学学报》 2013年第6期11-14,共4页 Journal of Northeast Electric Power University
关键词 最小二乘法 单目标规划 多目标规划 Least squqre method Single objective programming Multi-objective programming
  • 相关文献

参考文献3

二级参考文献21

  • 1黄怀志,王浣尘.交互式多目标决策方法的研究现状和发展方向[J].系统工程,1995,13(6):1-6. 被引量:4
  • 2曾文艺,李洪兴,施煜.模糊线性回归模型(Ⅰ)[J].北京师范大学学报(自然科学版),2006,42(2):120-125. 被引量:19
  • 3梁艳,魏立力.系数为LR-型模糊数的模糊线性最小二乘回归[J].模糊系统与数学,2007,21(3):111-117. 被引量:8
  • 4W.T. Collins. Runoff distribution graphs from precipitation occurring in more than one time unit. Civ. Eng. (N. Y.), 1939, 9(9) :559-561.
  • 5F.F. Snyder. Hydrograph analysis by the method of least squares. Proc. ASCE, 1955, 81, separate 793.
  • 6T. D. Prasad, R. Gupta and S. Prakash. Determination of Optimal Loss Rate Parameters and Unit Hydrograph. Journal of Hydrologic Engineering, 1999, 4(1) :83-87.
  • 7D.R. Maidment. Handbook of Hydrology. McGraw- Hill, Inc., New York, NY10020, the USA, 1992.
  • 8K. Schittowski. NLQPL: A FORTRAN - subroutine solving constrained nonlinear programming problems. Annals of Operations Research, 1985, 5:485 - 500.
  • 9P. Venkataraman. Applied optimization with Matlab pmgramming. John Wiley & Sons, New York, 2001.
  • 10Chang P T, Stanley L E. Fuzzy least absolute deviations regression based on the ranking of fuzzy numbers [J]. IEEE, 1994,0-7803-1896-X : 1365.

共引文献12

同被引文献27

  • 1黄文,管昌生.城市集中供热研究现状及发展趋势[J].国外建材科技,2004,25(5):78-80. 被引量:49
  • 2樊昌信,詹道庸.通信原理[M].北京:国防工业出版社,1995.
  • 3Haris Gacanin,Fumiyuki Adachi.Selected mapping with symbol re-mapping for OFDM/TDM using MMSE-FDE[J].Wirel.Commun.Mob.Comput.,2010,1211.
  • 4Li X,Liang Y,Mitra T,et al.Chronos : A timing analyzer for embedded software[J].Science of Computer Programming,2007,69(1):56-67.
  • 5Wilhelm R,Grund D.Computation takes time,but how much[J].Communications of the ACM,2014,57(2):94-103.
  • 6Kosmidis L,Quinones E,Abella J,et al.Achieving timing composability with measurement-based probabilistic timing analysis[C]//In IEEEInternational Symposium on Object/component/service-oriented Real-time distributed computing(ISORC).2013:1-8.
  • 7Cazorla F J,Quinones E,Vardanega T,et al.Proartis:Probabilistically analyzable real-time systems[J].ACM Transactions on Embedded Computing Systems(TECS),2013,12(2s):94-119.
  • 8Li Y T S,Malik S.Performance analysis of embedded software using implicit path enumeration[J].ACM SIGPLAN Notices,1995,30(11):88-98.
  • 9Knoop J,Kovdcs L,Zwirchmayr J.An Evaluation of WCET Analysis using Symbolic Loop Bounds[J].Proc.of WCET,2011.
  • 10Blazy S,Maroneze A,Pichardie D.Formal Verification of Loop Bound Estimation for WCET Analysis[M]//Verified Software:Theories,Tools,Experiments.Springer Berlin Heidelberg,2014:281-303.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部