期刊文献+

不完全信息下导弹参数与状态的联合估计

Joint Estimation of Parameters and States for Missile with Incomplete Information
下载PDF
导出
摘要 基于UKF推导了非线性系统参数的递推最大似然估计算法,并结合UKF实现了对不完全信息下导弹的参数与状态的实时联合估计。首先通过引入导弹的导引律,建立导弹的状态滤波模型,进而给出参数辨识的一般递推似然法,并在UKF状态滤波算法的基础上推导出非线性递推最大似然参数估计方法,实现了参数估计与状态滤波的并行计算。仿真结果表明,该方法收敛速度快,具有很好的实时性和较高的估计精度。 The nonlinear system recursive maximum likelihood (RML) estimation method was derived based on Unscented Kalman Filter (UKF), and real-time joint estimation of parameters and states for missiles with incomplete information was realized. First, the guidance law was introduced into the missile state estimation model, and a state filtering model was established. Then, the classical RML method for parameter identification was presented, based on which the nonlinear RML was developed through UKF. Finally, the parallel calculation of parameter identification and state estimation was completed. The numerical simulation result shows that this method has fast convergence speed, good real-time performance and high estimation accuracy.
出处 《电光与控制》 北大核心 2014年第1期42-45,54,共5页 Electronics Optics & Control
关键词 联合估计 参数辨识 UKF 递推最大似然估计 joint estimation parameter identification UKF recursive maximum likelihood estimation
  • 相关文献

参考文献12

  • 1周宏仁.机动目标跟踪[M]{H}北京:国防工业出版社,1991.
  • 2嵇成新,许江湖,陈康.跟踪机动目标的多模型算法进展[J].系统工程与电子技术,2003,25(7):882-885. 被引量:5
  • 3孙松斌,宋建梅,张婧.超低空拦截导弹武器系统的UKF-IMM目标跟踪算法[J].系统工程与电子技术,2009,31(10):2367-2371. 被引量:9
  • 4LIN L,KIRUBARAJAN T,BAR-SHALOM Y. Pursuer identification and time-to-go estimation using passive measurements from an evader[J].{H}IEEE Transactions on Aerospace and Electronic Systems,2005,(01):190-204.doi:10.1109/TAES.2005.1413756.
  • 5史忠科.最优估计的计算方法[M]{H}北京:科学出版社,2001.
  • 6周荻.寻的导弹新型导引规律[M]{H}北京:国防工业出版社,2002.
  • 7钱杏芳;林瑞雄;赵亚楠.导弹飞行力学[M]{H}北京:北京理工大学出版社,2000.
  • 8雷虎民.导弹制导与控制原理[M]{H}北京:国防工业出版社,2006.
  • 9何斌,张剑锋.有源导弹逼近告警初步技术研究[J].电子信息对抗技术,2008,23(5):39-42. 被引量:3
  • 10梁彦;潘泉;杨峰.复杂系统的现代估计理论及应用[M]{H}北京:科学出版社,2009.

二级参考文献23

  • 1宋建梅,郑建强.平方根滤波在捷联寻的制导系统中的应用研究[J].北京理工大学学报,2006,26(6):475-477. 被引量:3
  • 2Wan Eric A. Rudolph van der Menve . The unscented Kalman filter for nonlinear estimation[C]//IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium , 2000: 153 - 158.
  • 3Simo Sarkka. On unscented Kalman filtering for state estimation of continuous time nonlinear systems[J] IEEE Trans. on Automatic Control, 2007, 52(9) : 1631 - 1641.
  • 4Soonho Jeong. Topics in multi-sensor maneuvering target tracking[D]. Auburn: Auburn University, 2005.
  • 5Blackman Samuel S, Multiple hypothesis tracking for multiple target tracking [J]. Aerospace and Electronic Systems Magazine, IEEE, 2004,19(1):5-12.
  • 6Tudoroiu N, Zaheeruddin M. Fault detection and diagnosis of valve actuators in discharge air temperature (DAT) systems, using inter active unscented Kalman filter estimation[C]//IEEE International Symposium on Industrial Electronics, 2006 : 9 - 12.
  • 7王昭松,宋建梅.基于UKF滤波的捷联制导系统视线角速率提取方法研究[C]//中国毪行力学学术年会论文集,2007:93-97.
  • 8Ackerson G A, Fu K S. On State Estimation in Switching Environments[J]. IEEE Trans. on Automatic Control, 1970, AC - 15: 10- 17.
  • 9Anderson B D O, Moore J B. Optimal Filtering[M]. Englewood Cliffs,NJ: Prentice-Hall, 1979.
  • 10Blom H A P. An Efficient Filter for Abruptly Changing Systems[ C ].Proc. 23rd IEEE Conf. Decision and Control, Dec. 1984.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部