期刊文献+

Hausdorff算子在Campanato空间的有界性

The Boundedness of Hausdorff Operators on Campanato Spaces
原文传递
导出
摘要 研究了几种不同类型的Hausdorff算子在Campanato空间的有界性,并且得到了这些算子在Campanato空间上有界的最佳常数.此外,还讨论了多线性Hausdorff算子在Morrey空间中的有界性. We study several kinds of Hausdorff operators on Campanato spaces and obtain the sharp bounds for them. Furthermore, we also discuss the boundedness of multilinear Hausdorff operator on Morrey space.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2014年第1期1-8,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11226104 11271330) 江西省自然科学基金(20114BAB211007) 江西省教育厅基金(GJJ13703) 省教育厅基金资助项目(Y201225707)
关键词 Hausdorff算子 CAMPANATO空间 MORREY空间 最佳常数 Hausdorff operator Campanato spaces Morrey space multilinear
  • 相关文献

参考文献5

二级参考文献27

  • 1Zun-wei FU~(1,2) Zong-guang LIU~3 Shan-zhen LU~(1+) Hong-bin WANG~3 ~1 School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China,~2 Department of Mathematics,Linyi Normal University,Linyi 276005,China,~3 Department of Mathematics,China University of Mining and Technology (Beijing),Beijing 100083,China.Characterization for commutators of n-dimensional fractional Hardy operators[J].Science China Mathematics,2007,50(10):1418-1426. 被引量:41
  • 2Lu Shanzhen and Yang Dachun (Beijing Normal University, China).THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS[J].Analysis in Theory and Applications,1995,11(3):72-94. 被引量:50
  • 3G Brown, F M6ricz. Multivariate Hausdorff operators on the spaces L^P(R^n), J Math Anal Appl, 2002, 271: 443-454.
  • 4D C Chang, C Sadosky. Function of bounded mean oscillation, Taiwan Residents J Math, 2006, 10: 537-601.
  • 5J Chen, D Fan, J Li. Hausdorff operators on function spaces, Chinese Ann Math Ser B, 2012 (to appear).
  • 6J Chen, D Fan, C Zhang. On multilinear Hausdorff operators and their best constants, Acta Math Sinica, submitted.
  • 7M Christ, L Grafakos. The best constants for two non-convolution inequalities, Proc Amer Math Soc, 1995, 123: 1687-1693.
  • 8D Deng, Y Ham Theory of Hp Spaces, Beijing University Press, 1991 (in Chinese).
  • 9R Fefferman. The atomic decomposition of H1 on product spaces, Adv in Math, 1985, 55: 90-100.
  • 10R Fefferman. Harmonic analysis on product spaces, Ann of Math, 1987, 126: 109-130.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部