期刊文献+

自由单演逆半群上的核—迹算子半群 被引量:1

Trace-Kernel Operator Semigroup of Free Monogenic Inverse Semigroup
原文传递
导出
摘要 对于逆半群上的同余ρ,在它的迹类中存在最大元ρT和最小元ρt.相应地,在它的核类中有最大元ρK和最小元ρk.因此,我们在S的同余格上得到四个算子Г={T,t,K,k}.本文将给出自由单演逆半群上,由算子半群Г生成的半群,即自由单演逆半群上的核一迹算子半群. For congruence p on an inverse semigroup, there are maximal element pT and minimal element pt in a trace class; by the same token, there are maximal element pK and minimal element pk in a kernel class. So we can find four operators F = {K, k, T, t} on congruence lattice C(S) of an inverse semigroup S. In this paper, we gained extremum congruence which is not identity relation on free monogenic inverse semigroup Ix. Then establishing relations in F on congruence lattice C(S), we obtain trace-kernel operator semigroup F+/E* of Ix finally.
作者 龙薇 汪立民
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2014年第1期101-108,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金项目资助(11261018)
关键词 自由单演逆半群 极值同余 free monogenic inverse semigroup kernel trace congruence
  • 相关文献

参考文献11

  • 1Djadcenko G. G, Schein B. M., Monogenic inverse semigroups, Algebra and Number Theory, Naleik, 1973, 1:3-26 (Russian).
  • 2Eberhart C., Selden J., One parameter inverse semigroups, Trans. Amer. Math. Soc., 1972, 168: 53-66.
  • 3Pastijn F. J., Trotter P. G., Lattice of completely regular semigroup varieties, Pacific J. Math., 1998, 119: 191-214.
  • 4Petrich M., Congruences networks for completely simple semigroups, J. Austral. Math. Soc., 1994, A56: 243-266.
  • 5Petrich M., Congruence on inverse semigroups, J. Algebra, 1978, 55: 231-256.
  • 6Petrich M., Reilly N. R., A network of congruences on inverse semigroups, Trans. Amer. Math. Soc., 1982, 270:309 325.
  • 7Petrich M., The semigroup generated by certain operators of the congruence lattice of a Clifford semigroup, Semigroup Forum, 1992, 45: 332-341.
  • 8Petrich M., Monogenic Inverse Semigroups, Inverse Semigroups, A Wiley-interscience Publication, Printed in the United States Of America, 1984:393-435.
  • 9Scheiblich H. E., A characterization of a free elementary inverse semigroup, Semigroup Forum, 1971: 2: 76-79.
  • 10Wang L. M., TK-operator semigroups for cryptogroups, Semigroup Forum, 2000, 60:368 384.

同被引文献13

  • 1HOWIE J M.An Introduction to Semigroup Theory [M].NewYork:Academic Press,1976.
  • 2MUNN W D.Congruence-free Inverse Semigroups [J].Quart.J.Math,1974,25(2):463-484.
  • 3TROTI'ER P G.Congruenee-free Inverse Semigroups [J].Semigroup Forum,1974(9):109-116.
  • 4GUO X J,DING J Y,HE X T.Primitive Left Ample Semi-groups [J].Jourual of Semigroups Theory and Applications,2013,2013(7):1-9.
  • 5WANG L M.Congruence-free Regular Semigroups with Q-nverse Transversals [J].Acta Mathematiea Sinica:Chinese Series,2002,45(1):15-20.
  • 6BAILES G L.Right Inverse Semigroups [J].J.Algebra,1973,26:429-507.
  • 7PASTIJN F,PETRICH M.Congruences on Regular Semi groaps[J].Trans.Amer.Math.Soe.,1986,295:607-633.
  • 8HALL T E.On Regular Semigroups [J].J.Algebra,1973,24:1-24.
  • 9QIU X W,GUO X J,SHUM K P.Strongly Rpp Semi-groups Endowed with Some Natural Partial Orders [J].Journal of Semigroups Theory and Applications,2013,2013(7):18-29.
  • 10LUO X Q.H'-regular Semigroups [J].Bulletin of Mathe-matical Science & Applications(India),2012,1(1):63-70.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部