期刊文献+

一类随机时滞微分方程随机θ方法的均方收敛率 被引量:1

Mean-square Convergence Rate of Stochastic-Theta Methods for a Class of Stochastic Differential Delay Equations
原文传递
导出
摘要 给出了一类随机时滞微分方程随机θ方法的均方收敛率,这类方程对于时滞项可以不满足Lipschitz条件而仅需要满足一定条件的Hlder连续. We provide a mean-square convergence rate of stochastic theta methods for a class of stochastic differential delay equations whose coefficients are not Lipschitz but only HSlder continuous.
作者 刘军
机构地区 济宁学院数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2014年第1期163-170,共8页 Acta Mathematica Sinica:Chinese Series
基金 山东省优秀中青年科学家科研奖励基金(BS2010DX004) 济宁学院青年科研基金(2012QNKJ09)
关键词 non—Lipschitz条件 随机时滞微分方程 随机θ方法 收敛率 non-Lipschitz condition stochastic differential delay equations stochastictheta methods convergence rate
  • 相关文献

参考文献9

  • 1Baker C. T. H., Buckwar E., Continuous 0-methods for the stochastic pantograph equation, Electron. Trans. Numer. Anal., 2000, 11(3): 131-151.
  • 2Bao J., BStcher B., Mao X., Yuan C., Convergence rate of numerical solutions to SFDEs with jumps, J. Comput. Appl. Math., 2011, 236(2): 119-131.
  • 3Fan Z., Liu M. Z., Cao W. R., Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations, J. Math. Anal. Appl., 2007, 325(2): 1142-1159.
  • 4GySngy I., Rasonyi M., A note on Euler approximations for SDEs with HSlder continuous diffusion coeffi- cients, Stochastic Process. Appl., 2001, 121(10): 2189-2200.
  • 5Higham D. J., Kloeden P. E., Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 2005, 101(1): 101-119.
  • 6Higham D. J., Mao X., Stuart A. M., Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 2002, 40(3): 1041-1063.
  • 7Higham D. J., Mao X., Yuan C., Preserving exponential mean-square stability in the simulation of hybrid stochastic differential equations, Numer. Math., 2007, 108(2): 295-325.
  • 8Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, 2nd ed., Springer, New York, 2000, corrected 6th printing.
  • 9Yuan C., Mao X., Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching, Mat. Comput. Simula., 2004, 64(2): 223-235.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部