期刊文献+

多波段信息融合的遥感影像变化检测 被引量:4

Remote Sensing Image Change Detection Based on Multi-band Information Fusion
原文传递
导出
摘要 传统遥感影像变化检测方法大多基于单波段信息,难以完整检测影像的变化信息。针对该问题,提出了一种基于马尔可夫随机场模型(MRF)的多波段遥感影像变化检测方法,利用MRF模型融合所有波段的变化信息。在求解MRF模型参数的过程中,引入MoLC与EM混合模型进行迭代计算。实验结果表明,本文方法的检测精度优于现有的变化检测方法,并且稳定性良好。 Traditional remote sensing image change detection methods have difficulty in detecting complete change information based on a single-band. To solve this problem, the paper proposes a multi-band remote sensing image change detection method using a Markov Random Field, fusing all band change information. In the process of solving the MRF model parameters, the MoLC (method of LogCumulants) and EM (expectation-maximization) hybrid model is introduced for iterative calculation. Experimental results show that the detection accuracy of the proposed method is superior to the cur- rent change detection methods, and is stable.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第1期8-11,16,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金青年基金资助项目(61201341) 国家博士后基金资助项目(2012M511269) 民政部减灾和应急工程重点实验室开放基金资助项目(LDRERE20120205) 长江水利委员会长江科学院开放研究基金资助项目(CKWV2012325/KY)~~
关键词 遥感影像 变化检测 MRF模型 能量函数 信息融合 迭代运算 remote sensing image change detection MRF model energy function information fusion iterative calculation
  • 相关文献

参考文献14

  • 1Chini M, Pacifici F, Eery W. Comparing Statistical and Neural Network Methods Applied to very High Resolution Satellite Images Showing Changes in Man-made Structures at Rocky Flats [J]. IEEE Trans Geosci Remote Sens, 2008, 146 (6): 1 812- 1 821.
  • 2Francesca B, Bruzzone L. A Detail preserving Scale driven Approach to Change Detection in Mul- titemporal SAR Images[J] IEEE Trans Geosci Re mote Sens, 2005,43(12) :2 963-2 972.
  • 3Moser G, Serpico S B, Vernazza G. Unsupervised Change Detection from Multichannel SAR Image [J]. IEEE Trans Geosci Remote Sens, 2007,4(2) 278 282.
  • 4Song C, Woodcock C E, Seto K C, et al. Classifi cation and Change Detection Using Landsat TM Da- ta: When and How to Correct Atmospheric Effects [J]. Remote Sens Environ, 2001, 75:230-244.
  • 5Li Deren. Change Detection from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2003,28(3):7 12.
  • 6Jackson Q, Landgrebe D. Adaptive Bayesian Con- textual Classification Based on Markov Random Fields[J]. IEEE Trans Geosci Remote Sens, 2002, 40(11):2 454-2 463.
  • 7Brozzone L, Prieto D F. Automatic Analysis of the Difference Image for Unsupervised Change Detec tion[J]. IEEE Trans Geosci Remote Sens, 2000,38 (3):1 171 1 182.
  • 8Tison C, Nicolas J M, Tupin F, et al. A New Sta tistical Model for Markovian Classification of Urban Areas in High-resolution SAR Images [J]. IEEE Trans Geosci Remote Sens, 2004, 42 (10):2 046 2 057.
  • 9Gabriele M, Sebastiano B S. Unsupervised Change Detection from MultichanneI SAR Data by Mark- ovian Data Fusion[J]. IEEE Trans Geosci Remote Sens, 2009, 44(10):2 972 2 982.
  • 10Kasetkasem T, Varshney P tection Algo Models [ J ]. 2002, 40(4) hm Based on IEEE Trans 815 1 823.

同被引文献41

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部