期刊文献+

利用MKLD准则的自适应PF算法设计及其应用

Design of Adaptive Particle Filtering Algorithm Based on MKLD Criteria and Its Application
原文传递
导出
摘要 为降低PF算法的计算量,提出了基于最大Kullback-Leibler距离(MKLD)准则的PF-AMCMC算法。该算法可在自适应地选择粒子数的前提下,同时自适应地选择粒子滤波算法中MCMC移动步骤实施的时刻,在保证一定的状态估计精度的条件下,减少粒子滤波的计算量。大量的数值试验和GPS/DR组合导航仿真试验表明,本文提出的算法较标准粒子滤波算法在克服粒子滤波计算量大的缺陷方面有显著的效果,且获得了精度更高的状态估计。 This paper presents a new algorithm named PF-AMCMC based on Maximum Kullback- Leibler distance (abbreviated as MKLD) criterion. This algorithm can adaptively choose the number of particles and at the same time select the implementation moment of MCMC movement, and reduces the computational complexity under conditions guaranteeing the accuracy of state estimation. The results of computational experiments and a GPS / DR integrated navigation simulation experiment show that the improved particle filtering methods proposed in this paper have a better performances for state estimation than other approaches.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第1期90-94,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40974009 10903032)~~
关键词 粒子滤波 最大Kullback—Leibler距离准则 Markov链Monte Carlo GPS 航位推算 particle filtering maximum Kullback-Leibler distance criterion Markov Chain Monte Carlo GPS/dead reckoning
  • 相关文献

参考文献3

二级参考文献5

  • 1周寿军,陈武凡,王涌天.医学图像轮廓跟踪的广义模糊粒子滤波方法[J].计算机学报,2005,28(1):88-96. 被引量:6
  • 2Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/non-gaussian Bayesian State Estimation[J]. IEE Proceedings-F, 1993, 140(2): 107-113.
  • 3Giremus A, Tourneret J Y, Djuric P M. An Improved Regularized Particle Filters for GPS/INS Integration[C]//Proc. of the 6th IEEE Workshop on Signal Processing Advances in Wireless Communications. Toulouse, France: [s. n.], 2005: 1013-1017.
  • 4Arulampalam M S, Maskell S, Gordon N. A Tutorial on Particle Filters for Online Nonlinear/non-nonlinear/non-gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 5[美]PeterJ.Brockwell,RichardA.Davis著,田铮.时间序列的理论与方法[M]高等教育出版社,2001.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部