期刊文献+

Rational time-frequency multi-window subspace Gabor frames and their Gabor duals 被引量:1

Rational time-frequency multi-window subspace Gabor frames and their Gabor duals
原文传递
导出
摘要 This paper addresses the theory of multi-window subspace Gabor frame with rational time-frequency parameter products.With the help of a suitable Zak transform matrix,we characterize multi-window subspace Gabor frames,Riesz bases,orthonormal bases and the uniqueness of Gabor duals of type I and type II.Using these characterizations we obtain a class of multi-window subspace Gabor frames,Riesz bases,orthonormal bases,and at the same time we derive an explicit expression of their Gabor duals of type I and type II.As an application of the above results,we obtain characterizations of multi-window Gabor frames,Riesz bases and orthonormal bases for L2(R),and derive a parametric expression of Gabor duals for multi-window Gabor frames in L2(R). This paper addresses the theory of multi-window subspace Gabor frame with rational time-frequency parameter products.With the help of a suitable Zak transform matrix,we characterize multi-window subspace Gabor frames,Riesz bases,orthonormal bases and the uniqueness of Gabor duals of type I and type II.Using these characterizations we obtain a class of multi-window subspace Gabor frames,Riesz bases,orthonormal bases,and at the same time we derive an explicit expression of their Gabor duals of type I and type II.As an application of the above results,we obtain characterizations of multi-window Gabor frames,Riesz bases and orthonormal bases for L2(R),and derive a parametric expression of Gabor duals for multi-window Gabor frames in L2(R).
出处 《Science China Mathematics》 SCIE 2014年第1期145-160,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 11271037) Beijing Natural Science Foundation (Grant No. 1122008) the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM201110005030)
关键词 frame Gabor frame dual frame,Gabor frame,dual
  • 相关文献

参考文献1

二级参考文献21

  • 1Peter L. S?ndergaard.Gabor frames by sampling and periodization[J]. Advances in Computational Mathematics . 2007 (4)
  • 2A. J. E. M. Janssen.From continuous to discrete Weyl-Heisenberg frames through sampling[J]. The Journal of Fourier Analysis and Applications . 1997 (5)
  • 3Gabor Analysis and Algorithms, Theory and Applications. . 1998
  • 4Gabardo J P,Li Y Z.Density results for Gabor systems associated with periodic subsets of the real line. Journal of Approximation Theory . 2009
  • 5Heil C.A discrete Zak transform. Technical Report MTR-89W00128 . 1989
  • 6Janssen A J E M.From continuous to discrete Weyl-Heisenberg frames through sampling. Journal of Fourier Analysis and Applications . 1997
  • 7Auslander L,Gertner I C,Tolimieri R.The discrete Zak transform application to time-frequency analysis and synthesis of nonstationary signal. IEEE Transactions on Signal Processing . 1991
  • 8Blcskei H,Hlawatsch F.Discrete Zak transforms, polyphase transforms and applications. IEEE Transactions on Signal Processing . 1997
  • 9Cvetkovi′c Z.Overcomplete expansions for digital signal processing. . 1995
  • 10Cvetkovi′c Z,Vetterli M.Tight Weyl-Heisenberg frames in l2(Z). IEEE Transactions on Signal Processing . 1998

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部