期刊文献+

取代基对腺嘌呤与胸腺嘧啶氢键复合物体系结合能的影响 被引量:7

Effects of Substituents on the Binding Energy in Hydrogen-bonded Complexes Containing Adenine and Thymine
下载PDF
导出
摘要 优化得到了17个取代胸腺嘧啶与腺嘌呤形成的氢键复合物的结构,并计算了这些复合物的结合能,探讨了胸腺嘧啶上不同取代基对结合能的影响.结果表明,CF3取代的胸腺嘧啶与腺嘌呤间的结合能大于胸腺嘧啶与腺嘌呤间的结合能,这可能是屈氟尿苷具有阻止病毒及肿瘤扩散功能的原因所在.SO3H,CN和NO2取代的胸腺嘧啶与腺嘌呤间具有更大的结合能,表明这3个基团取代的胸腺嘧啶也可能具有潜在的抗肿瘤作用.分子中原子理论与自然键轨道分析表明,在所有体系中,氢键N—H…N最强,N—H…O C次之,C—H…O C最弱,轨道作用在氢键作用中占有重要地位. The optimal structures and binding energies of seventeen substitutional thymine and adenine hydro- gen-bonded complexes were obtained theoretically and the effects of substituents on the binding energies were explored. The calculation results show that the interaction between trifluridine and adenine is stronger than that between thymine and adenine. This conclusion is in agreement with the fact that the association of trifluridine and adenine has precedence over the association of thymine and adenine. Compared with CF3 , three stronger electron withdrawing groups( SO3 H, CN and NO2 ) can increase the binding energy between thymine and ade- nine, suggesting that the thymine substituted by these three groups may also provide a potential anticancer ap- plication. Atoms in molecules theory and the natural bond orbital analysis indicate that N--H-.. N hydrogen bon-ding is the strongest, N--H...O = C is stronger, while C--H…O = C is the weakest. Atoms in mole- cules theory and the natural bond orbital analysis also indicate that the orbital overlap interactions play a signi- ficant role in these hydrogen bonds.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第1期154-160,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21173109 21133005) 教育部高等学校博士点基金(批准号:20102136110001) 辽宁省优秀人才基金(批准号:LR2012037) 大连市领军人才项目资助~~
关键词 屈氟尿苷 胸腺嘧啶 腺嘌呤 取代基效应 结合能 氢键 Trifluridine Thymine Adenine Substituent effect Binding energy Hydrogen bond
  • 相关文献

参考文献39

  • 1刘进元;李文君;王薛林.分子生物学[M]{H}北京:科学出版社,2001287-298.
  • 2冯小黎;郭需石;胡建飞;胡少晖;胡松年;李京湘;李雷;刘斌;刘国振;刘明旭;刘韧;娄晓敏;时亮;宋光;宋其峰;宋述慧;苏夜阳;汪浩;王彩平;王敦梅;王霞;吴东颖;吴琳;闫春霞;杨焕明;张明;张清润;张欣;赵辉;朱金桂.基因的分子生物学[M]{H}北京:科学出版社,2009198-203.
  • 3尤启冬.药物化学[M]{H}北京:化学工业出版社,2008368-374.
  • 4Mohajeri A;Nobandegani F. F.查看详情[J],{H}Journal of Physical Chemistry A2008281-295.
  • 5Kawahara S;Kobori A;Sekine M;Taira K.; Uchimaru T.查看详情[J],{H}Journal of Physical Chemistry A200110596-10601.
  • 6Kawahara S;Uchimaru T;Taira K;Sekine M.查看详情[J],{H}Journal of Physical Chemistry A20013894-3898.
  • 7Kawahara S;Uchimaru T;Tairi K;Sekine M.查看详情[J],{H}Journal of Physical Chemistry A20023207-3212.
  • 8Dong H;Hua W. J;Li S. H.查看详情[J],{H}Journal of Physical Chemistry A20072941-2945.
  • 9Hobza P;Sponer J;Cubero E;Orozco M.; Luque F.J.查看详情[J],{H}Journal of Physical Chemistry B20006286-6292.
  • 10Asensio A;Kobko N;Dannenberg J. J.查看详情[J],{H}Journal of Physical Chemistry A20036441-6443.

二级参考文献33

  • 1Desiraju, G. R.; Steiner, T. The Weak of Hydrogen Bond;Oxford University Press: New Nork, 1999; pp 343-412.
  • 2Jeffrey, G. A. An Introduction to Hydrogen Bonding', OxfordUniversity Press: New York, 1997; pp 184-212.
  • 3Scheiner, S. Hydrogen Bonding: A Theoretical Perspective、Oxford University Press: New York, 1997; pp 105-117.
  • 4Chalaris,M.; Samios, J. J. Phys. Chem. B 1999,103, 1161.doi:10.1021/jp982559f.
  • 5Mohajeri, A.; Nobandegani, F. F. J. Phys. Chem. A 2008,112,281. doi: 10.1021/jp075992a.
  • 6Jiang, X. N.; Wang, C. S. ChemPhysChem 2009, JO, 3330.doi: 10.1002/cphc.200900591.
  • 7Li, Y.; Jiang, X. N.; Wang, C. S. J. Comput. Chem. 2011,32,953. doi: 10.1002/jcc.v32.5.
  • 8Kolew,S. K.; Petkow, P. S.; Rangelow,M. A.; Vayssilow, G. N.J. Phys. Chem. A 2011,115,14054. doi: 10.1021/jp204313f.
  • 9Angelina, E. L.; Peruchena, N. M. J. Phys. Chem. A 2011,115,4701. doi: 10.1021/jp1105168.
  • 10Ji, C. G.; Zhang, Z. H. J. Phys. Chem. B 2011,115, 12230. doi:10.1021/jp205907h.

共引文献4

同被引文献133

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部