期刊文献+

基于子迭代次数的LDPC码改进动态调度算法 被引量:1

Improving LDPC Decoding Algorithm with Informed Dynamic Scheduling
下载PDF
导出
摘要 为了降低低密度奇偶校验(Low Density Parity Check,LDPC)码的译码算法复杂度,提高译码性能,结合基于残余值的动态译码NW-RBP算法和最小和算法,提出了一种基于子迭代次数的改进NW-RBP算法,将此算法称为NW-RBPF算法。该算法在进行残余值计算时利用最小和进行计算,并且根据子迭代过程中每行迭代更新的次数,由仿真得出的收敛因子计算对残余值的补偿值。仿真结果表明,该算法的译码性能相比NW-RBP算法提高了0.05 dB,收敛速度提高了1.5倍,并且其贪婪性降低,是一种适用于LDPC码,且译码性能良好、实现复杂度较低的译码算法。 To reduce the complexity and improve the performance of the decoding algorithm for Low Density Parity Check (LDPC) codes, an improved algorithm NW-RBPF based on the number of the updates of the check-nodes completed in an iteration is presented in this paper, which uses the min- BP and a convergence factor to calculate the residual mentioned in NW-RBP algorithm. In this paper, the convergence factor is obtained by calculating the BERs using different factors. Simulations show that the algorithm achieves better performance than the NW-RBP algorithm in 0.05 dB. It also outper- forms NW-RBP for a large numbers of iterations. Therefore, this algorithm provides both good performance and convergence speed for any check node degree distribution in the LDPC codes.
作者 安琪 张晓林
出处 《电视技术》 北大核心 2014年第1期124-127,159,共5页 Video Engineering
关键词 BP解码 动态调度 NW-RBP 最小和算法 收敛因子 belief propagation decode dynamic scheduling NW-RBP Min-Sum convergence factor
  • 相关文献

参考文献11

  • 1肖扬.Turbo与LDPC编码及应用[M].北京:人民邮电出版社,2010.
  • 2VILA CASADO A I,GRI0T M,WESEL R D.Overcoming LDPC trap-ping sets with informed scheduling[EB/OL].[2013-04-10].http://www.seas.ucla.edu/csl/files/publications/Andres_ITA2007Pres.pdf.
  • 3黄捷.LDPC码和积译码的动态调度算[D].北京:北京交通大学,2011.
  • 4VILA CASADO A I,GRIOT M,WESEL R D.Informed dynamic schedu-ling for belief-propagation decoding of LDPC codes[C]//Proc.IEEEInternational Conference on Communications.Glasgow:IEEE Press,2007..932-937.
  • 5ELIDAN G,MCGRAW I,KOLLER D.Residual belief propagation:in-formed scheduling for asynchronous message passing[EB/OL].[2013-04-10].http://arxiv.org/abs/l206.6837.
  • 6VILA CASADO A I,GRIOT M,WESEL R D.Improving LDPC decodersvia Informed dynamic scheduling[C]//Proc.Information Theory Work-shop.California;[s.n.],2007:208-213.
  • 7VILA CASADO A I,GRI0T M,WESEL R D.LDPC decoders with in-fonned dynamic scheduling[J].IEEE Trans.Communications,2010,58(12):3470-3479.
  • 8钟州,李云洲,孙引,王京.基于LDPC码校验节点度的分类修正最小和算法[J].清华大学学报(自然科学版),2009(1):45-48. 被引量:6
  • 9HOCEVAR D.A reduced complexity decoder architecture via layereddecoding of LDPC codes[C]//Proc.Signal Processing Systems.[S.1.]:IEEE Press,2004:107-112.
  • 10SHARON E,LITSYN S,GOLDBERGER J.Efficient serial message-passing schedules for LDPC decoding[J].IEEE Trans.InformationTheory,2007,53(11):4076-4091.

二级参考文献8

  • 1Gallager R G. Low-density parity check codes [J]. IRE Trans Inform Theory, 1962, IT-8:21-28.
  • 2MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32(18) : 1645 - 1646.
  • 3Fossorier M P C, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation [J]. IEEE Trans Commun, 1999, 47(5) : 673 - 680.
  • 4CHEN Jinghu, Fossorier M P C. Density evolution for two improved BP-based decoding algorithms of LDPC codes [J]. IEEE Communication Letters, 2002, 6(5) : 208 - 210.
  • 5CHEN Jinghu, Fossorier M P C. Near optimum universal belief propagation-based decoding of low density parity check codes [J]. IEEE Trans Commun, 2002, 50(3): 406 -414.
  • 6Lee J K-S, Thorpe J. Memory-efficient decoding of LDPC codes [C]//Proc IEEE ISIT, Adelaide, Australia, 2005: 459-463.
  • 7Howard S L, Schlegel C, Gaudet V C. Degree-matched check node decoding for regular and irregular LDPCs [J]. IEEE Transactions on Circuits and Systems, 2006, 53(10): 1054 - 1058.
  • 8MacKay D J C. Good error-correcting codes based on very sparse matrices [J]. IEEE Trans Inform Theory, 1999, 45(2): 399-431.

共引文献5

同被引文献17

  • 1GALLAGER R G. Low density parity check ctxtes[J]. IRE Trans. Information Theor,,' 1962,8( 1 ) :21-28.
  • 2KOU Y L, LIN S+ FOSSORIER M P C. lw-density parity-check codes based on finite geometries: a rediscovery and new results[ J ]. IEEE Trans. Information Theory', 2001, 47(7 ) :2711-2736.
  • 3ZHANG J, FOSSORIER M P C. A modified weighted bit-flipping decoding of |ow-density parity-check codes[J]. IEEE Communica-tions Letters, 2004, 8 ( 3 ) : 165-167.
  • 4JIANG M, ZHAO C M, SHI Z, et al. An improvement on the modi- fied weighted bit flipping decoding algorithm for LDPC codes [ J ]. IEEE Communications Letters, 2005 ( 9 ) :814-816.
  • 5GUO F,HANZO L. Reliability ratio based weighted bit-flipping de- coding for low-density parity-check codes[J]. Electronics Letters, 2004, 40(21 ) :1356-1358.
  • 6LIU Z, PADOS D A. A decoding algorithm for finite-geometry LDPC codes[J]. IEEE Trans. Conmmnieations, 2005, 53(3) :415--421.
  • 7WADAYAMA T, NAKAMURA K, YAGITA M, et al. Grachent descent bit flipping algoritbn for detx:ding LDPC c'odes[J]. IEEE Trans. Com- munications, 2010, 58 (6) : 1610-1614.
  • 8CHEN T C. An efficient bit-flipping decoding algorithm for LDPC codes[ C]//Proc. International Conference on Cross Strait Quad- Regional Radio Science and Wireless Technology. New Taipei City : IEEE Press, 2012 : 109-112.
  • 9CHEN T. Clmnuel-independent weighted bit-flipping decoding al- gorithm for low-density parity-check codes[ J ]. lET Communica- tions, 2012, 6( 17 ) :2968-2973.
  • 10ZHANG G Y, ZHOU L, WEN H. Modified channel-independent weighted bit-flipping decoding algorithm fir LDPC codes[ J]. lET Communication, 2014, 8(6) :833-840.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部