期刊文献+

关于给定直径的单圈图的Wiener指标

On the Wiener Index of Unicyclic Graphs with Fixed Diameter
下载PDF
导出
摘要 一个图的Wiener指标被定义为W(G)=∑{u,v}V(G)dG(u,v),其中dG(u,v)是G中u,v间的距离。本文得到了在所有直径为d的n阶单圈图中,具有最小Wiener指标的极图。特别地,当4≤d≤n-3,且d≡0(mod 2)时,具有次小Wiener指标的极图也被得到。 The Wiener index is defined as W(G)=∑dG(u,v)where dc;(u,v) is the distance between u and v in G. In this paper, we obtain the graph with the least Wiener index among all the unicyclic graphs with n vertices and diameter d. Moreover, if 4≤d≤n-3(mod 2), then theunicyclic graphs with the second least Wiener index are obtained.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期768-772,共5页 Journal of East China University of Science and Technology
关键词 WIENER指标 单圈图 直径 Wiener index unicyclic graph diameter
  • 相关文献

参考文献2

二级参考文献27

  • 1Barefoot C.A.,Entringer R.C.,L.A.Székely.Extremal values for ratios of distances in trees[J].Discrete Appl.Math.,1997,80:37-56.
  • 2Bollobás B.Extremal graph theory[M].Academic Press,London,New York,San Francisco,1978.
  • 3Bollobás B.Modern graph theory[M].Volume 184 of Graduate Texts in Mathematics,Springer,Berlin,Heidelberg,New York,1998.
  • 4Bondy J.A.,Murty U.S.R.Graph theory with applications[M].Macmillan Press,London,1976.
  • 5Dobrynin A.A.,Entringer R.,Gutman I.Wiener index of trees:theory and applications[J].Acta Appl.Math.,2001,66:211-249.
  • 6Dobrynin A.A.,Gutman I.,Klavzar S.,Zigert P.Wiener index of hexagonal systems[J].Acta Appl.Math.,2002,72:247-294.
  • 7Entringer R.C.,Jackoson D.E.,Snyder D.A.Distance in graphs[J].Czechoslavak Math.J.,1976,26:283-296.
  • 8Entringer R.C.,Meir A.,Moon J.W.,Székely L.On the Wiener index of trees from certain families[J].Australas.J.Combin.,1994,10:211-224.
  • 9Fischermann M.,Hoffmann A.,Rautenbach D.,Székely L.,Volkmann L.Wiener index versus maximum degree in trees[J].Discrete Appl.Math.,2002,122:127-137.
  • 10Gutman I.,Soltés L.,The range of the Wiener index and mean isomer degeneracy[J].Z.Naturforsch,1991,46A:865-868.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部