摘要
一个图的Wiener指标被定义为W(G)=∑{u,v}V(G)dG(u,v),其中dG(u,v)是G中u,v间的距离。本文得到了在所有直径为d的n阶单圈图中,具有最小Wiener指标的极图。特别地,当4≤d≤n-3,且d≡0(mod 2)时,具有次小Wiener指标的极图也被得到。
The Wiener index is defined as W(G)=∑dG(u,v)where dc;(u,v) is the distance between u and v in G. In this paper, we obtain the graph with the least Wiener index among all the unicyclic graphs with n vertices and diameter d. Moreover, if 4≤d≤n-3(mod 2), then theunicyclic graphs with the second least Wiener index are obtained.
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第6期768-772,共5页
Journal of East China University of Science and Technology