期刊文献+

基于泛克里格方法的树种多样性空间估计研究 被引量:2

Estimation of spatial distribution of tree species diversity based on Universal Krige Model
下载PDF
导出
摘要 生物多样性保护已成为森林可持续经营的一个重要目标。生物多样性的空间分布估计对于森林经营者了解生物多样性的空间格局和变化趋势具有重要意义。本研究主要基于汪清林业局二类调查数据和局级固定样地数据,以树种多样性为例,利用泛克里格方法对全局树种多样性进行空间分布估计。结果表明,泛克里格方法的预测精度较高(R2=0.697 7),树种多样性在固定样地的抽样尺度下,存在一定的空间自相关性,预测的树种多样性最高值为1.82,最低值为0.221,空间分布具有明显的空间异质性,呈现出北部低,东部,南部和西部高的空间分布格局。研究结果为区域尺度基于固定样地和地统计学的树种多样性空间分布估计提供了方法和参照。 Biodiversity conservation is one of major goals of forest sustainable management. Estimation of spatial distribution is extremely significant for forest manager to get better sense of the spatial pattern and dynamical changes of biodiversity. By taking the tree species diversity as an example and using Universal Krige (UK), the spatial distribution of tree species diversity based on bureau- level permanent plot data of forest inventory in Wangqing forest enterprise, Jilin Province were estimated. The results demonstrate that the UK for the studied area was a feasible method with a higher prediction accuracy (R2=0.6977); Spatially, tree species diversity varied obviously in this region from 1.82 to 0.221; In addition, the spatial distribution map shows that there was an obvious trend in the studied area: lower tree species diversity in north and higher in east, west and south. Meanwhile, the results provide a method and reference for the region-scale tree species diversity estimation based on the permanent plot and geo-statistics.
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2013年第12期67-71,共5页 Journal of Central South University of Forestry & Technology
基金 林业公益性行业专项"我国典型森林类型健康经营关键技术研究"(201004002)
关键词 树种多样性 空间分布格局 地统计学 泛克里格方法 tree species diversity spatial distribution pattern geo-statistics universal kriging
  • 相关文献

参考文献13

  • 1雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学,2002,38(3):140-146. 被引量:134
  • 2洪伟,吴承祯.杉木种源胸径生长地理变异规律的研究[J].植物生态学报,1998,22(2):186-192. 被引量:11
  • 3Malhi Y,Wood D,Baker T,et al.The regional variation ofaboveground live biomass in old-growth Amazonian forests[J].Global Change Biology,2006,12:1107-1138.
  • 4Meng Q,Cieszewski C,Madden M.Large area forest inventoryusing Landsat ETM+:A geostatistical approach[J].ISPRSJournal of Photogrammetry and Remote Sensing,2009,64:27-36.
  • 5Akhavan R,Kia-Daliri H.Spatial variability and estimation oftree attributes in a plantation forest in the Caspian region of Iranusing geostatistical analysis[J].Caspian Journal of EnvironmentalSciences,2010,8(2):163-172.
  • 6李明阳,刘敏,刘米兰.基于GIS的森林调查因子地统计学分析[J].南京林业大学学报(自然科学版),2010,34(6):66-70. 被引量:13
  • 7Sales M H,Souza Jr C M,Kyriakidis P C.Improving spatialdistribution estimation of forest biomass with geostatistics:A case study for Rondonia,Brazil[J].Ecological Modelling,2007,205(1/2):221-230.
  • 8Du H Q,Zhou G M,Fan W Y,et al.Spatial heterogeneity andcarbon contribution of aboveground biomass of moso bamboo byusing geostatistical theory[J].Plant Ecol,2010,207:131-139.
  • 9刘晓梅,布仁仓,邓华卫,胡远满,刘志华,吴志伟.基于地统计学丰林自然保护区森林生物量估测及空间格局分析[J].生态学报,2011,31(16):4783-4790. 被引量:32
  • 10Cressie N A C.Statistic for spatial data[M].John Wiley&Sons,New York,1993.151-172.

二级参考文献52

共引文献208

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部