期刊文献+

周期三对角矩阵求逆的快速算法 被引量:2

Fast Inversion of Periodic Tridiagonal Matrices
下载PDF
导出
摘要 利用t向量来求周期三对角矩阵之逆。求逆的运算量为2n2+O(n)乘除法及n2+O(n)加减法。该算法计算量小且计算精度高。若对t向量进行截断、快速求逆,则求逆的计算量仅与n成正比。与现有快速算法相比,清除了电脑内存溢出的情况。文末列出了部分数值算例。 In this paper, inversion of periodic tridiagonal matrices is discussed using the tvec- tot. Computational complexity of the inversion is 2n2 2r-O(n) of multiplication and division and n2 4-O(n) of addition and subtraction. The algorithm has a low computational cost as well as high precision. The computational cost is further reduced to become proportional to n if the t vector is truncated and fast inverse& In contrast to the existing fast algorithms, the out-of-memory errors no longer occur. Numerical examples are presented.
作者 唐达
出处 《上海电机学院学报》 2013年第5期300-304,共5页 Journal of Shanghai Dianji University
关键词 周期三对角矩阵 逆矩阵 溢出 t向量 快速求逆 periodic tridiagonat matrix inverse matrix overflow t-vector fast inversion
  • 相关文献

参考文献18

二级参考文献54

共引文献47

同被引文献30

  • 1宋以胜,张传定,张书华.三对角、五对角对称Toeplitz矩阵的解析逆阵[J].测绘学院学报,2004,21(2):82-84. 被引量:1
  • 2WilkinsonJH著 石钟慈 邓健新 译.代数特征值问题[M].北京:科学出版社,2001..
  • 3Gu Ming, Eisenstat S C. A divide-and-conquer al- gorithm for the symmetric tridiagonal eigenproblem [J]. SIAM Journal on Matrix Analysis and Applica- tion, 1995,16(1): 172-191.
  • 4GolubOH,VanLoanCF.矩阵计算[M].袁亚湘译.3版.北京:人民邮电出版社,2011:372-373,391-397.
  • 5Roopamala T D, Katti S K. Eigenvalue of tridiago- nal matrix using Strum sequence and Gerschgorin theorem[J]. International Journal on Computer Sci- ence and Engineering, 2011,3(12) : 3722-3727.
  • 6Coakley Ed S, Rokhlin V. A fast divide-and-con- quer algorithm for computing the spectra of real symmetric tridiagonal matrices [J]. Applied and Computational Harmonic Analysis, 2013, 34 ( 3 ) : 379-414.
  • 7Brockman P, Carson T, Cheng Yun, et al. Homo- topy method for the eigenvalues of symmetric tridi- agonal matrices[J]. Journal of Computational and Applied Mathematics, 2013,237 ( 1 ) .. 644-653.
  • 8Matsekh A M. The Godunov-inverse iteration: A fast and accurate solution to the symmetric tridiago- nal eigenvalue problem [J]. Applied Numerical Mathematics, 2005,54(2): 208 -221.
  • 9Ahmed Driss Aiat Hadj, Mohamed Elouafi. A fast numeri- cal algorithm for the inverse of a tridiagonal and pentadi- agonal matrix[J]. Applied Mathematics and Computation, 2008,202 : 441-445.
  • 10M. E. Kanal, N. A. Baykara, M. Demiralp. Theory and al- gorithm of the inversion method for pentadiagonal matri- ces[J]. J Math Chem,2012,20:289 299.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部