期刊文献+

超声导波的频散补偿与模式分离算法研究 被引量:12

Dispersion compensation and mode separation of the ultrasonic guided waves
下载PDF
导出
摘要 超声导波已被广泛应用于无损检测与评价,针对超声导波应用中普遍存在的模式混叠与频散问题,本文在采用频谱相位与信号时延函数建模导波频散信号传递系统的基础上,提出了一种单一模式的频散补偿算法。进一步地,通过将选择性频散补偿技术与导波模式分离相结合,本文算法克服了传统补偿算法所不能解决的多模式导波频散问题。板中的Lamb波A_0,A_1和S_0混合模式仿真分析表明,本算法不仅可用于单一导波模式信号合成与频散补偿,而且可在实现多模式混合导波信号选择性频散补偿基础上,解决多模式导波信号中单一模式提取与分离。本文研究有助于超声导波多模式频散信号的分析与处理. The application of ultrasonic guided waves has been got considerable attentions in non-destructive evaluation (NDE). However, the mode overlap and dispersion problem of guided waves are still challenging. In the present study, we used the spectral phase and time delay function to model the guided dispersion transfer system, and developed a compensation algorithm of single mode dispersion. Aiming to overcome the unsolved difficulty of multimode processing, dispersion compensation was then combined with the mode separation. Simulations of the Lamb modes A0, A1 and So illustrated that the proposed algorithm is capable of synthesizing and compensating of single mode dispersion. Furthermore, using the selectively compensation, the individual modes can also be extracted from the multimodal guided signals. The study is helpful for the signal processing of multimodal guided dispersion.
出处 《声学学报》 EI CSCD 北大核心 2014年第1期99-103,共5页 Acta Acustica
基金 国家自然科学基金(11174060 11327405 11304043) 上海市科技支撑计划(13441901900) 教育部博士点基金(20110071130004) 教育部新世纪优秀人才计划(NCET-10-0349) 中国博士后基金(2012M520826)资助
关键词 超声导波 分离算法 补偿算法 频散 信号传递系统 混合模式 补偿基础 LAMB波 Algorithms Nondestructive examination Signal processing Ultrasonic waves
  • 相关文献

参考文献7

二级参考文献112

  • 1阿肯巴赫 徐植信译.弹性固体中波的传播[M].上海:同济大学出版社,1992..
  • 2他得安 王威琪 汪源源.相位谱法研究长骨中超声导波的频散[J].仪器仪表学报,2007,28(8):139-142.
  • 3Laugier P, Wear K A, Waters K R. Introduction to the special issue on diagnostic and therapeutic applications of ultrasound in bone-part I. IEEE Trans. on UFFC, 2008; 55(6): 1177--1178.
  • 4Laugier P, Wear K A, Waters K R. Introduction to the special issue on diagnostic and therapeutic applications of ultrasound in bone-part II. IEEE Trans. on UFFC, 2008; 55(7): 1415--1416.
  • 5Moilanen P. Ultrasonic guided waves in bone. IEEE Trans. on UFFC, 2008; 55(6): 1277--1286.
  • 6TA De'an, HUANG Kai, WANG Weiqi et al. Identification and analysis of multimode guided waves in tibia cortical bone. Ultrasonics, 2006; 44(51): e279--284.
  • 7Protopappas V C, Fotiadis D I, Malizos K N. Guided ultrasound wave propagation in intact and healing long bones. Ultrasound in Med.& Biol., 2006; 32(5): 693--708.
  • 8Moilanen P, Nicholson P H F, Kilappa V, Cheng S, Timonen J. Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study. Ultrasound in Med. &Biol., 2007; 33(2): 254--262.
  • 9Moilanen P, Nicholson P H F, Kilappa V et al. Measuring guided waves in long bones- Modeling and experiments in free and immersed plates. Ultrasound in Med.& Biol., 2006; 32(5): 709--719.
  • 10Moilanen P, Kilappa V, Nicholson P H F. Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound in Med. & Biol., 2004; 30(11): 1517--1521.

共引文献81

同被引文献73

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部