期刊文献+

基于自组织聚类和改进粒子群算法的语音转换方法 被引量:1

Voice conversion based on self organization clustering and modified particle swarm optimization
下载PDF
导出
摘要 提出一种基于自组织聚类,并且利用改进粒子群算法确定转换模型参数的语音转换方法.该方法首先基于自组织特征映射网络对特征参数进行聚类,再对每个聚类分别建立转换规则,并且利用柯西变异的粒子群算法确定每个转换规则中的模型参数.与传统的单一转换规则相比,聚类后建立的多转换规则以及利用改进粒子群算法确定参数能够提高映射关系的准确度,避免参数陷入局部最优点。以女声转男声为例,主观测试表明该方法得到的转换语音与目标的相似度提高了27.6%,平均主观意见分(Mean Opinion Score,MOS)提高了0.6,客观测试也表明该方法谱失真最小,与目标的包络更接近. A method of voice conversion based on self organization clustering and determining parameters of conversion model by modified Particle Swarm Optimization (PSO) is proposed. Firstly, Self Organization Feature Mapping (SOFM) Network is used to cluster the characteristic parameters, and then the conversion rule for each cluster is established, where the parameters of conversion model in each conversion rule are determined by modified PSO with Cauchy mutation. Compared with the single conversion rule in conventional method, the multiple rules established by using clustering and parameters determined by modified PSO can improve the accuracy of mapping function and avoid the model parameters being trapped in the local optimum. The experiments take the conversion from female to male as example, by subjective evaluation, the proposed method increases the similarity by 27.6% through ABX test, and increases the Mean Opinion Score (MOS) by 0.6, and by objective evaluation, the spectral distortion with proposed method is the least.
出处 《声学学报》 EI CSCD 北大核心 2014年第1期130-136,共7页 Acta Acustica
基金 国家自然科学基金(60872105) 江苏省"青蓝工程"中青年学术带头人课题 江苏高校优势学科建设工程项目(PAPD)资助
  • 相关文献

参考文献14

二级参考文献127

  • 1左国玉,刘文举,阮晓钢.声音转换技术的研究与进展[J].电子学报,2004,32(7):1165-1172. 被引量:32
  • 2高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 3张建伟,夏德深.高斯混合模型改进的活动轮廓模型MRI分割[J].计算机辅助设计与图形学学报,2005,17(12):2647-2653. 被引量:12
  • 4初敏.韵律研究与合成语音的自然度[A].第五届全国现代语音学学术会议.新世纪的现代语音学[C].北京: 清华大学出版社,2001.295-301.
  • 5Koen Van Leemput, Frederik Maes, Dirk Vandermeulen, et al. Automated Model-Based Field Correction of MR Image of the Brain. IEEE Trans, Medical Imaging, 18 (10) :897 - 906.
  • 6Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods [ J]. Journal of Computational Physics, 1999, 148(1) ::2-22.
  • 7Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognit. Lett. , 1994,15:341 - 347.
  • 8Wang Junghua, Lin Lianda. Improved median filter using minmax algorithm for image processing. Electronics Letters, 31stJuly, 1997, 33 (16).
  • 9Kennedy J, Eberhart R C. Particle Swarm Optimization[ C]. Proceedings of IEEE International Conference on Neutral Networks, Pwrth, Australia, 1995 : 1942 - 1948.
  • 10马明,数据采集与处理,1997年,12卷,96页

共引文献83

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部