期刊文献+

商品评论主题分析研究 被引量:1

Research on Topic Analysis of Product Review
下载PDF
导出
摘要 提出了基于LDA模型的商品评论主题分析框架,并以淘宝商城上商品评论数据为例实现了该框架实验证明,该方法获得的主题与淘宝商城提供的主题词具有较高的一致性. The topic analysis framework based on LDA is proposed and implemented in product review analysis from Taobao Mall. Experiments show that these topic keywords generated by the proposed framework are similar to the topic words provided by Taobao Mall.
作者 邓莎莎 袁菱
出处 《上海电力学院学报》 CAS 2013年第6期549-552,567,共5页 Journal of Shanghai University of Electric Power
关键词 LDA主题模型 商品评论分析 主题分析 latent dirichlet allocation (LDA) model product review analysis topic analysis
  • 相关文献

参考文献9

  • 1杨铭,祁巍,闫相斌,李一军.在线商品评论的效用分析研究[J].管理科学学报,2012,15(5):65-75. 被引量:85
  • 2孙升芸,田萱,何军.基于评论行为的商品垃圾评论的识别研究[J].计算机工程与设计,2012,33(11):4314-4319. 被引量:9
  • 3FEI G,MUKHERJEE A,LIU B,et al. Exploiting business in reviews for review spammer detection [ C ]//Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media. USA : Cambridge, Massachusetts, 2013 : 175-180.
  • 4BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[ J ]. Journal of Machine Learning Research, 2003 (3) :993-1 022.
  • 5李文波,孙乐,张大鲲.基于Labeled-LDA模型的文本分类新算法[J].计算机学报,2008,31(4):620-627. 被引量:103
  • 6WANG X, ZHAI C, ROTH D. Understanding evolution of research themes:a probabilistic generative model for citations [C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,2013:I 115-1 123.
  • 7CASELLA G, GEORGE E I. Explaining the gibbs sampler [J]. The American Statistician, 1992,46 ( 3 ) : 167-174.
  • 8GEORGE H. Parameter estimation for text analysis [ R ]. Technical Report,2005.
  • 9周茜,赵明生,扈旻.中文文本分类中的特征选择研究[J].中文信息学报,2004,18(3):17-23. 被引量:165

二级参考文献82

  • 1张启蕊,张凌,董守斌,谭景华.训练集类别分布对文本分类的影响[J].清华大学学报(自然科学版),2005,45(S1):1802-1805. 被引量:26
  • 2曾雪强,王明文,陈素芬.一种基于潜在语义结构的文本分类模型[J].华南理工大学学报(自然科学版),2004,32(z1):99-102. 被引量:27
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4Kumar N, Benbasat I. The influence of recommendations and consumer reviews on evaluations of websites [ J ]. Information Systems Research, 2006, 17 (4) : 425 - 439.
  • 5Dellarocas C. The digitization of word of mouth : Promise and challenges of online feedback mechanisms [ J ]. Management Science, 2003, 49(10) : 1407 - 1424.
  • 6Park D H, Lee J, Han I. The effect of on-line consumer reviews on consumer purchasing intention : The moderating role of involvement[ J]. International Journal of Electronic Commerce, 2007, 11 (4) : 125 - 148.
  • 7Zhang Z. Weighing stars : Aggregating online product reviews for intelligent e-commerce applications [ J ]. IEEE Intelligent Systems, 2008, 23 (5) - 42 - 49.
  • 8Hu N, Pavlou P A, Zhang J. Can online reviews reveal a product' s true quality? Empirical findings and analytical modeling of online word-of-mouth communication[ C ]/! Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, Michigan, USA : Association for Computing Machinery, 2006 : 324 - 330.
  • 9Liu Y, Huang X J, An A J, et al. Modeling and predicting the helpfulness of online reviews [ C l// Procedings of the 8th IEEE International Conference on Data Mining, Washington. DC, USA: IEEE Computer Society, 2008:443 -452.
  • 10Ghose A, Ipeiortis P G. Designing novel review ranking systems : Predicting the usefulness and impact of reviews [ C ]/! Pro- ceedings of the 9th ACM Conference on Electronic Commerce, Minneapolis, MN, USA: Association for Computing Machin- ery, 2007:303-310.

共引文献357

同被引文献8

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部