摘要
采用有限元模拟计算分析,结合当量方法和等效方法的分析,详细讨论外压锥壳加强圈最佳位置工程计算问题。基于当量方法思想,得到一种加强圈最佳位置的简便计算方法。分析结果表明,加强圈最佳支撑位置k值与锥形比λ有关,随锥形比λ增大,最佳支撑位置k(或k1和k2值)也增大。采用当量方法、等效方法和有限元特征值法求得的最佳支撑位置k值相差并不大。等效方法与有限元模拟所得结果较接近,就所模拟的对象,对于单支撑,k值的最大偏差为4.9%;对于双支撑,k1最大偏差为8.5%,k2最大偏差为1.9%。相比较而言,当量方法与有限元模拟结果相差略高一些,最大的达14.3%。
The stiffening rings position for conical shell subjected to external pressure with finite element simulation combined with the equivalent method and the equivalent method are discussed in detail. A simple solution for the best position of stiffening rings is proposed based on equivalent method Results show that the best supporting position for stiffening rings k is relevant to taper ratio A and the best position of supporting k ( or values of k and k2 ) increase with the rise of taper ratio. The best support position k value from the above - mentioned three methods is similar to each other. The results from the equivalent method and finite element simulation method are relatively close. It can be shown that maximum difference of k value is 4.9% for single support in terms of the simulated objects while the maximum difference of k value and k2 value is 8.5 % and 1.9% respectively for double supports. Comparatively, the difference be- tween the results from the equivalent method and the finite element simulation is slightly bigger with the maximum difference reaching 14.3%.
出处
《压力容器》
2013年第12期44-50,共7页
Pressure Vessel Technology
关键词
锥壳
加强国
屈曲
支撑位置
有限元
conical shell
stiffening rings
buckling
support position
FEA