期刊文献+

热声载荷下薄壁结构非线性振动响应分析及疲劳寿命预测 被引量:8

Nonlinear vibration response analysis and fatigue life prediction of a thin-walled structure under thermal-acoustic loading
下载PDF
导出
摘要 基于时域分析法研究了金属薄壁结构在热声载荷下的非线性振动响应特性,并采用四种应力寿命模型预测了薄板梁的热声疲劳寿命。以典型薄板梁为研究模型,首先研究了单一噪声激励下薄板梁的时域响应特性及热载荷对其响应特性的影响机理,并仿真分析了薄板梁在热声激励下的非线性响应特性。在此基础上,运用雨流法统计了薄板梁根部的应力响应,并基于Miner线性累积损伤理论采用Goodman、Morrow、Walker和修正Walker应力寿命模型预测了薄板梁在不同工况下的热声疲劳寿命。研究结果表明:薄板梁的热模态基频在其热声疲劳问题中起主导作用;薄板梁热屈曲后的非线性跳变响应将增大应力幅值,从而严重削弱结构的预期寿命;噪声载荷是影响屈曲前薄板梁热声疲劳寿命的主要因素,而热载荷是影响屈曲后热声疲劳寿命的主要因素。因此在薄壁结构抗热声疲劳设计中必须重点考虑热声载荷联合作用的影响。 The thermal-acoustic vibration response characteristics of metallic thin-walled structures were investigated based on the time-domain analysis method, and four kinds of stress life models were employed to predict the thermal-acoustic fatigue life of a clamped thin-walled aluminum beam. Time-domain response characteristics of a typical beam model under acoustic loading and thermal-acoustic loading were determined, respectively via numerical simulation. Its nonlinear response behavior was simulated and analyzed under thermal-acoustic lading. Furthermore, the rainflow counting method was used to do statistics of the stress response at the root of the beam. Its fatigue life was predicted based on Miner linear cumulative damage theory and using 4 stress fatigue models including Goodman, Morrow, Walker, and modified Walker. The results showed that the thermal modal fundamental frequency of the beam in thermal-acoustic fatigue problems is predominant; the snap-through motion between the beam's multiple post-buckled equilibrium positions introduces very high alternating stress weakening the fatigue life expectancy of the beam ; acoustic loading is a major factor affecting the pre-buckled fatigue life of the beam, while thermal loading is a major factor dffecting the post-buckled fatigue life of the beam; therefore, anti-fatigue design of a thin-walled structure under thermal-acoustic loading must study the effects of combination action of thermal-acoustic loading.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第24期135-139,168,共6页 Journal of Vibration and Shock
基金 西北工业大学基础研究基金(JC20110237) 航空科学基金(2012ZB53019)
关键词 薄壁结构 热声载荷 时域分析 非线性跳变响应 雨流法 Miner损伤理论 thin-walled structure thermal-acoustic loading time domain analysis nonlinear snap-through rainflow counting Miner theory
  • 相关文献

参考文献9

  • 1沙云东,郭小鹏,廖连芳,解丽娟.随机声载荷作用下的复杂薄壁结构Von Mises应力概率分布研究[J].振动与冲击,2011,30(1):137-141. 被引量:15
  • 2金奕山,李琳.关于航空发动机结构声疲劳寿命估算方法的探讨[J].航空动力学报,2003,18(3):373-377. 被引量:17
  • 3Locke J E. A Finite Element Formulation for the large Deflection Random Response of Thermally Buckled structures [D]. Ph.D.Dissertation, Old Dominion University, Norfolk, VA,1988.
  • 4Locke J E, Mei C. A Finite Element Formulation for the Large Deflection Random Response of Thermally Buckled Beams [J]. A1AA Journal,1990,28.2125-2131.
  • 5S Michael Spottswood, Joseph J H. Reduced-Order Models for a Shallow Curved Beam Under Combined Loading [C]. AIAA JOURNAL Vol.48,No.1, January 2010.
  • 6Dowling N E. "Mean stress effects in stress-life and strain-life fatigue," Fatigue 2004: Second SAE Brasil Conference on Fatigue, SAE 2004-01-2227, S?o Paulo, Brasil, 2004.
  • 7Przekop, Adam, Stephen A. Rizzi, and Karl A. Sweitzer, "An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response," 48th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, April 23-26, 2007, AIAA 2007-2204.
  • 8Khosrovanch A K,Dowling N E.Fatigue Loading History Reconstruction Based on the Rain-Flow Technique[J]. International Journal of Fatigue,1990,12(2):99-106.
  • 9Metallic Materials Properties Development and Standardization (MMPDS-01), U.S. Department of Transportation, Knovel Interactive Edition, 2004.

二级参考文献18

  • 1金奕山,李琳.随机振动载荷作用下结构Von Mises应力过程的研究[J].应用力学学报,2004,21(3):13-16. 被引量:24
  • 2Price J L. Development of turbine engine structural design critrria-final Report [R]. AFAPL-TR-76 - 104, 1977.
  • 3Grigoriu M. Crossings of Non-Gaussian Translation Processes [J]. J. Eng. Mech. , 1984,110(4):610-620.
  • 4Madsen H. Extreme Value Statistics for Nonlinear Load Combination[J], J. Eng. Mech., 1985, 111:1121-1129.
  • 5Segalman D, Reese G, Field, Jr R, et al. Estimating the Probability distribution of Von Mises stress for structures undergoing random excitation, Part 1: Derivation; Part 2: Example calculations. DE-Vol. 98, Dynamics, Acoustics and Simulations, ASME 1998.
  • 6Segalman D, Reese G, Field Jr R, et al. Estimating the probability distribution of yon Mises stress for structures undergoing random excitation [ J ]. Transactions of the ASME, Journal of vibration and acoustics, 2000, 122: 42 - 48.
  • 7Pitoiset X, Preumont A, Kernilis A. Tools for a multiaxial fatigue analysis of structures submitted to random vibration [ C 1- European Conference on Spacecraft Structures, Materials and Mechanical Testing, Braunschweig,1998.
  • 8Gupta S, Manohar C S. Probability Distribution of Extremes of Von Mises Stress in Randomly Vibrating Structures [ J ]. Transactions of the ASME, Journal of vibration and acoustics, 2005, V 127:547 -555.
  • 9Bonte M H A, De Boer A, Liebregts R. Prediction of mechanical fatigue caused by multiple random excitations [ C ]. Proceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA, 2004.
  • 10Pasha G R, Khan M S,Pasha A H. Empirical analysis of the Weibull distribution for failure data[ J]. J. Statist. 13 (1) (2006) : 33 -45.

共引文献30

同被引文献100

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部