期刊文献+

基于MapReduce的大数据流程处理方法 被引量:1

MapReduce-based method for large data flow processing
下载PDF
导出
摘要 处理效率是数据流程处理的重要指标,简单的单服务器结构已经难以适应海量数据的处理任务。为了能够完成海量数据的流程处理任务,简要介绍了Google的MapReduce的结构,Fegaras等剔除的MapReduce查询语言(MRQL),并基于MapReduce编程模型和MRQL提出了一种分布式数据汇聚方法。该方法借助MapReduce完成数据处理流程的执行,借助MRQL控制MapReduce。在XBus数据汇聚平台基础上,结合MapReduce和MRQL实现了MRXBus分布式数据汇聚平台,验证了该方法的可行性。实验表明,该方法可以减少大数据量的处理时间,提高处理效率。 Processing efficiency is an important indicator of the data flow process. It is hard to accomplish large data processing tasks by the simple single-server structure. In order to accomplish the process of massive data processing tasks, first introduced the structure of MapReduee proposed by Google and MRQL ( MapReduce Query Language) proposed by Fegaras, and then proposed a distributed data flow processing method based on MapReduce programming model and MRQL. This method used MapReduee to carry out the data flow processing and MRQL to control MapReduce. Based on XBus data aggregation platform, MRXBus ( MapReduce XBus) was designed and implemented to verify the feasibility of the method. Experimental results show that this method can reduce the time of massive data processing and improve the efficiency of data aggregation.
出处 《计算机应用》 CSCD 北大核心 2013年第A02期57-59,127,共4页 journal of Computer Applications
基金 山东省自然科学基金资助项目(ZR2011FQ028) 山东省统计科研重点课题一般项目(KT12067)
关键词 数据流程处理 数据汇聚 MAPREDUCE HADOOP MapReduce查询语言 data flow processing data aggregation MapReduce Hadoop MapReduce Query Language (MRQL)
  • 相关文献

参考文献12

  • 1FEGARAS L, LI C, GUPTA U. An optimization framework for map-re-duce queries[ C] // Proceedings of the 15th International Conference onExtending Database Technology. New York: ACM, 2012: 26 - 37.
  • 2DEAN J, GHEMAWAT S. MapReduce: simplified data processing onlai^e clustersfj]. Communications of the ACM, 2(X^, 51 (1): 107 -113.
  • 3Xadoop[ EB/OL]. [2013 -04 -25]. http://www.xadoop.ory.
  • 4KHATCHADOURIAN S, CONSENS M,SIMEON J. ChuQL: pro-cessing XML with XQuery using Hadoop[ C] // Proceedings of the2011Conference of the Center for Advanced Studies on CollaborativeResearch. Riverton: IBM Corp. 2011: 74 - 83.
  • 5OLSTON C, REED B, SRIVASTAVA U,etal. Pig Latin: a not-so-foreign language for data processing[ C] // Proceedings of the 2008ACM SIGMOD International Conference on Management of Data.New York: ACM, 2008: 1099-1110.
  • 6THUSOO A,SARMA J S, JAIN N,et al. Hive: a warehousing so-lution over a map-reduce frameworfc [ J]. Proceedings of the VLDBEndowment, 2009,2(2): 1626 - 1629.
  • 7FEGARAS L, LI C, GUPTA U, et al. XML query optimization in map-reduce[ C] // WebDB 2011: Proceedings of the Fourteenth Int^nationalWoricshop on the Web and Databases. Athens, Greece: [s. n. ],2011.
  • 8BORTHAKUR D. The Hadoop distributed file system: architectureand design[ EB/OL]. [ 2013 - 06 - 01 ] . http: //hadoop. apache.org/docs/iO. IS. 0/hdfs_design. pdf.
  • 9WHITE T. Hadoop权威指南[M].周敏,曾大聃,周傲英,译.北京:淸华大学出版社,2010.
  • 10Hadoop[ EB/OL], [2013 - 03 - 21]. http://hadoop. apache, oig/.

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部