期刊文献+

WS型多层前向小世界神经网络结构自适应模型

Adaptive structure model for WS multilayer feedforward small-world artificial neural networks
下载PDF
导出
摘要 WS型多层前向小世界神经网络模型中捷径生成具有随机性,这种随机的删除且向后跨层连接产生捷径很可能使小世界体系神经网络丢失重要的信息,导致网络性能变差。针对这个问题提出了一种WS型多层前向小世界神经网络结构自适应模型,该模型借鉴了复杂动态网络研究中和谐统一的混合择优思想,通过以确定的连接权值矩阵为指导有目的性地选择权值大的边产生捷径,生成小世界体系结构。将新网络应用于函数逼近,在设定精度相同情况下对不同跨层概率下的收敛次数作比较,仿真发现该小世界网络在概率0.05附近时比同规模的网络有更好的收敛速度,与WS小世界人工神经网络在相同概率的情况下达到相同精度所需的平均迭代次数相比较,收敛速度得到提高。 The model of Watts-Strogatz (WS) multilayer feedforward small-world artificial neural networks generate short- cuts randomly, the random delete and cross-layer link backwards likely make small-world neural network loss important information, and lead to network performance becoming poor. According to this problem the model of WS multilayer feedforward small-world adaptive structure artifical neural network was put forward. The model bases on Harmonious Unifying Hybrid Preferential Model (HUHPM) in complex dynamic network through selecting the edges with large weights to generate short-cuts guided by deterministic connection weight matrix, constructs small-world artificial neural networks. The new network was used to function approximation. The simulation results show that the new network converges faster, in other words, has the smaller iterations compared with the WS small-world artificial neural network, and converges the fastest near the above probability of 0.05.
出处 《计算机应用》 CSCD 北大核心 2013年第A02期80-82,90,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61040012)
关键词 多层前向小世界网络 择优思想 结构自适应 函数逼近 multilayer feedforward small-world network merit thought adaptive structue function approximation
  • 相关文献

参考文献8

二级参考文献41

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部