期刊文献+

基于效用模式树的高效用频繁模式挖掘算法 被引量:3

Mining algorithm for high utility frequent patterns based on utility pattern tree
下载PDF
导出
摘要 为了提高效用模式挖掘的效率,提出了一种基于效用模式树的两阶段效用模式挖掘算法。在第一阶段,该算法能够对全局非候选节点进行合理的舍弃,并能降低全局效用模式树中节点的估计效用。通过效用模式增长算法,递归地生成候选高效用项集。在第二阶段,通过扫描调整后的事务数据库,缩小第二阶段的搜索空间。实验表明,该算法能够减少候选集的数量,提高高效用项集的生成效率。 In order to improve the efficiency of utility pattern mining, a two-phase, utility tree based mining algorithm was proposed. In phase one, reasonable non-candidate node discarding was implemented on utility pattern tree, which could significantly reduce estimated node utility of global utility pattern tree. Through utility pattern growth algorithm, candidate itemsets generated recumively. In phase two, by scanning the adjusted transaction database, the search space was reduced. Experimental results demonstrate that the algorithm can reduce the number of candidate sets, and improve the efficiency of the generation about high utility itemsets.
出处 《计算机应用》 CSCD 北大核心 2013年第A02期111-115,141,共6页 journal of Computer Applications
关键词 效用挖掘 频繁模式 效用模式树 估计效用 数据挖掘 utility mining frequent pattern utility pattern tree estimated utility data mining
  • 相关文献

参考文献14

  • 1PEI J, HAN J, LU H, et al. H-mine: fast and spacepreserving fre-quent pattern mining in large databases [ C]// ICDM 2001: Pro-ceedings of the 2001 IEEE International Conference on Data Mining.Piscataway: IEEE, 2001: 441 -448.
  • 2HAN J, PEI J, YIN Y. Mining frequent patterns without candidategeneration[ J]. ACM SIGMOD Record, 2000,29(2): 1 - 12.
  • 3UN C-H, CHIU D-Y,WU Y-H, et at. Mining frequent itemsetsfrom data streams with a time-sensitive sliding window [ C/OL]//Proceedings of the Fifth SIAM International Conference on DataMining. Philadelphia: SIAM, 2005[2013 -06 -01]. https://www. siam. oi^/proceedinga/datamining/2005/dm05_071inc. pdf.
  • 4ELTABAKH M Y, OUZZANI M,KHAUL M A, et al. Incrementalmining for frequent patterns in evolving time series databases, CSDTR#08-02 [ R] . Purdue University, 2008.
  • 5YUN U. An dficient mining of weighted frequent patterns with lengthdecreasing support constraints[ J]. Knowledge-Based Systems, 2008,21(8):741 -752.
  • 6TAO F, MURTAGH F, FARID M. Weighted association rule min-ing using weighted support and significance framework [ C]// KDD2003: ACM SIGKDD Conference on Knowledge Discovery and DataMining. New York: ACM, 2003: 661 -666.
  • 7陈文.基于Fp树的加权频繁模式挖掘算法[J].计算机工程,2012,38(6):63-65. 被引量:10
  • 8TSENG V S, CHU C J, UANG T. Efficient mining of temporal highutility itemsets from data streams [ C/OL] // Proceedings of the Sec-ond ACM KDD Workshop on Utility-Based Data Mining. New York:ACM, 2006. [2013 -06 -01]. http://www2. ic. uff. br/ ~ bian-ca/ubdm-camera-ready/tseng-ubdm06. pdf.
  • 9SUN K, BAI F. Mining weighted association rules without preas-signed weights[ J]. IEEE Transactions on Knowledge and Data En-gineering, 2008, 20(4):489 - 495.
  • 10YAO H,HAMILTON H J, GENG L. A unified framework forutility-based measures for mining itemsets [ C]// Proceedings ofthe ACM SIGKDD 2nd Workshop on Utility-Based Data Mining.New York: ACM, 2006:28 -37.

二级参考文献6

  • 1张振亚,陈恩红,王进,王煦法.基于加权项目的频繁项目集快速挖掘算法研究[J].模式识别与人工智能,2005,18(2):154-159. 被引量:1
  • 2邹力鹍,张其善.基于多最小支持度的加权关联规则挖掘算法[J].北京航空航天大学学报,2007,33(5):590-593. 被引量:17
  • 3Cai C H, Ada W C F, Chengetal C H. Mining Association Rules with Weighted Items[C]//Proc. of International Symposium on Database Engineering & Applications. Washington D. C., USA: IEEE Press, 1998.
  • 4Feng Tao, Murtagh F, Farid M. Weighted Association Rule Mining Using Weighted Support and Significance Framework[C]//Proc. of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S. l.]: ACM Press, 2003: 661-666.
  • 5Agrawal R, Mehta M, Shafer J, et al. The Quest Data Mining System[C]//Proc. of International Conference on Data Mining and Knowledge Discovery. [S. l.]: IEEE Press, 1996: 244-249.
  • 6欧阳为民,郑诚,蔡庆生.数据库中加权关联规则的发现[J].软件学报,2001,12(4):612-619. 被引量:96

共引文献9

同被引文献8

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部