摘要
针对截面点云无规则排序而不能进行点云光顺处理的问题,提出一种最小距离区域识别(MA)算法,对截面特征点云进行排序处理和噪声点的识别。实例证明,MA算法稳定、准确,可以高效完成点云排序,同时MA算法对截面噪声点有很强的识别能力。
The unorganized point cloud can not be smoothed, In order to solve this problem, the paper proposed a Minimum distance Area (MA) algorithm to sort point cloud and to identify the noisy points of the section feature point cloud. MA algorithm is stable, accurate, and can efficiently complete point cloud sorting, and MA algorithm has a strong ability to identify the noisy points of the section line point cloud.
出处
《计算机应用》
CSCD
北大核心
2013年第A02期209-211,共3页
journal of Computer Applications
关键词
点云排序
逆向工程
蚁群算法
多项式拟合
噪声点识别
point cloud sorting
reverse engineering
Ant Colony Algorithm (ACA)
polynomial fitting
noisy point identification