期刊文献+

土壤溶液性质对水溶性镍的西红柿毒害的影响 被引量:1

The Influence of Soil Solution Properties on Soluble Nickel Toxicity to Tomato Shoot
下载PDF
导出
摘要 选取17种具有代表性的中国土壤,研究土壤溶液性质对土壤孔隙水以及0.01mol/LCaCl2浸提液中镍(Ni)植物毒害的影响。结果发现,孔隙水中Ni(PW-Ni)对西红柿地上部分生物量50%抑制的毒性阈值(ECS0)变化范围为1.02~8.91mg/L,最大值是最小值的8.7倍;CaCl2.Ni的毒性阈值EC50变化范围为0.77~20.40mg/kg,最大值是最小值的26.5倍,表明土壤溶液性质对水溶性Ni的毒性阈值影响很大。土壤PW-Ni毒性主要受到K^+、Mg^2+、S的影响,基于这3个因子的回归方程可以较好预测PW-Ni对西红柿毒性阈值EC50,决定系数为0.71。当回归方程包括土壤溶液中溶解性有机碳(DOC)、pH、电导率(EC)、Ca^2+、Na^+时,其决定系数提高到0.84,说明其他因子对PW—Ni的毒性也存在一定的影响,利用这些土壤溶液性质可以较好预测PW-Ni的植物毒性阈值。 The influence of soil pore water properties on soluble nickel (Ni) phyto-toxicity based on soil pore water and 0.01 mol/L CaCl2 extraction was investigated using 17 Chinese soils.Results showed that the effective concentrations of Ni in soil pore water (PW-Ni) that caused 50% inhibition (ECS0) varied widely from 1.02 to 8.91 mg/L, represented 8.7 folds differences between the maximum and minimum values. Similarly, the EC50 of CaClE-Ni varied widely from 0.77 to 20.40 mg/L, represented 26.5 folds differences. These results indicated that soil solution properties greatly influenced the toxicity thresholds of soluble Ni in a wide range of soils. The K^+, Mg^2+ and S were three important factors controlling the influence of PW-Ni toxicity and multiple regression results showed that they could better predict the toxicity threshold with the coefficient of determination (R2) of 0.71. When incorporating other parameters (dissolved organic carbon (DOC), pH, electrical conductivity (EC), Ca^2+ and Na^+) into the regression models, the R2 for EC50 increased to 0.84, which implied that other factors also influenced the PW-Ni toxicity and these soil pore water chemistry could predict PW-Ni toxicity on tomato shoot.
出处 《土壤》 CAS CSCD 北大核心 2013年第6期1062-1069,共8页 Soils
基金 国家自然科学基金项目(40971262) 公益性行业(农业)科研专项项目(200903015)资助
关键词 土壤 毒害效应 西红柿 Soil, Nickel, Ptlytotoxicity, Tomato
  • 相关文献

参考文献24

  • 1张洪涛,李波,刘继芳,马义兵,韦东普.西红柿镍毒害的土壤主控因子和预测模型研究[J].生态毒理学报,2009,4(4):569-576. 被引量:13
  • 2李波,马义兵,刘继芳,韦东普,陈世宝,张洪涛,郭雪雁.西红柿铜毒害的土壤主控因子和预测模型研究[J].土壤学报,2010,47(4):665-673. 被引量:19
  • 3Rooney CP, Zhao F J, McGrath SP. Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 726 732.
  • 4Rooney CP, Zhao FJ, McGrath SP. Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation[J]. Environmental Pollution, 2007, 145(2): 596-605.
  • 5Li B, Zhang X, Wang XD, Ma YB. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6): 1 760-1 766.
  • 6Weng LP, Lexmond TM, Wolthoorn A, Temminghoff, van Riemsdijk WH. Phytotoxicity and bioavailability of nickel: Chemical speciation and bioaccumulation[J]. Environmental Toxicology and Chemistry, 2003, 22:2 1813~2 187.
  • 7Xue HB, Jansen S, Prasch A, Sigg L. Nickel Speciation and Complexation Kinetics in Freshwater by Ligand Exchange and DPCSV[J]. Environmental Science & Technology, 2001, 35(3): 539-546.
  • 8王学东,马义兵,华珞,张璇.铜对大麦(Hordeum vulgare)的急性毒性预测模型——生物配体模型[J].环境科学学报,2008,28(8):1704-1712. 被引量:13
  • 9Thibault DH, Sheppard MI. A disposable system for soil pore-water extraction by centrifugation[J]. Communica- tions in Soil Science and Plant Analysis, 1992, 23(13/14): 1 629-1 641.
  • 10Haanstra L, Doelman P, Oude Voshaar JH. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2): 293-297.

二级参考文献85

  • 1Bowman G M, Hutka J. 2002. Particle size analysis [ A]. // McKenzie N, Coughlan K, Cresswell H. Soil Physical Measurement and Interpretation for Land Evaluation[C]. Victoria: CSIRO Publishing, 224-239.
  • 2Doelman P, Haanstra L. 1989. Short-and long-term effects of heavy metals on phosphatase activity in soils: an ecological dose response model approach [J ]. Biology and Fertility of Soils, 8 (3): 235-241.
  • 3Echevarria G, Massoura S T, Sterckeman T, Becquer T, Schwartz C, Morel J L. 2006. Assessment and control of the bioavailability of nickel in soil [J]. Environmental Toxicology and Chemistry, 25(3 ): 643-651.
  • 4Haanstra L, Doelman P, Oude Voshaar J H. 1985. The use of sigmoidal dose response curves in soil ecotoxicological research [J]. Plant and Soil, 84(2): 293-297.
  • 5ISO. 2005. 11269-2 (2^nd edition) Soil Quality-Determination of the Effects of Pollutants on Soil Flora-Part 2: Effects of Chemicals on the Emergence and Growth of Higher Plants [ S ]. Geneva: International Organization for Standardization.
  • 6Janssen C R, De Schamphelaere K, Heijerick D, Muyssen B, Lock K, Bossuyt B, Vangheluwe M, Van Sprang P. 2000. Uncertainties in the environmental risk assessment of metals [J]. Human and Ecological Risk Assessment, 6(6): 1003-1008.
  • 7Ma J J, Yu F M, Zhu J T, Liu Y Y, Du B. 2008. Available Ni contents of farmland soils in Hebei province [J]. Ecology and Environment, 17 ( 3 ): 1028-1031.
  • 8Matejovic I. 1997. Determination of carbon and nitrogen in samples of various soils by the dry combustion[ J ]. Communications in Soil Science and Plant Analysis, 28( 17-18): 1499-1511.
  • 9OECD(Organization for Economic Cooperation and Development). 2003. Guideline for the Testing of Chemicals: Terrestrial Plant Test 208: Seedling Emergence and Seedling Growth Test (draft document ) [S]. Paris, France: OECD.
  • 10Oorts K, Bronckaers H, Smolders E. 2006. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils [J ]. Environmental Toxicology and Chemistry, 25(3): 845-853.

共引文献59

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部