期刊文献+

基于煅耗散最小的超临界二氧化碳传热优化研究 被引量:1

Heat Transfer optimization of CO_2 at Supercritical Pressures Based on the Least Entransy Dissipation Analyses
原文传递
导出
摘要 换热器性能的优化,不但能够强化传热减小阻力,而且能够节约能源和减少环境污染,这在能源日益短缺的今天具有重要的经济价值和社会效益。本文通过编程迭代的方法,对文献中的(火积)耗散均匀分布原则(EoED)和温差均匀分布原则(EoTD)略做改进,使改进后的两种优化原则更好地与实际应用相结合。基于改进后的两种优化原则,分析比较了二氧化碳在不同进口质量流量下,两种原则优化的效果.结果表明,从有效度、煅耗散数等沿管长Z方向的大小变化,显示(火积)耗散均匀分布原则优化结果明显优于温差均匀分布原则,表明煅耗散均匀分布原则的传热效率高于温差均匀分布原则. The optimization of heat exchanger performance not only enhances the heat transfer and reduces thermal resistance, but also saves energy and reduces environmental pollution, which has an important economic value and social benefits in today's growing energy shortages. In this paper, the principle of equipartition of entransy dissipation and temperature difference in reference were improved by the method of programming iteration, which could be combined with practical application better, based on the two improved principles, the optimization effect were analyzed and compared in view of the carbon dioxide at different inlet mass flow. The results showed that the principle of equipartition of entransy dissipation was better than the principles of equipartition of temperature difference from availability and entransy dissipation number, so the heat transfer efficiency was also better.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第1期136-139,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51376163)
关键词 超临界二氧化碳 煅耗散均匀分布原则 温差均匀分布原则 supercritical CO2 principle of equipartition of entransy dissipation principle of equipartition temperature difference
  • 相关文献

参考文献3

二级参考文献23

  • 1Bejan A. Advanced Engineering Thermodynamics [M]. New York: Wiley, 1988.
  • 2Hesselgreaves J E. Rationalisation of Second Law Analysis of Heat Exchanger [J]. Int. J. Heat Mass Transfer, 2000, 43:4189-4204.
  • 3Houck C R, Joines J, Key M. A Genetic Algorithm For Function Optimization: A Matlab implementation [J]. ACM Transactions on Mathematical Software, 1996.
  • 4Caputo Antonio C, Pelagagge Pacifico M, Salini Paolo. Heat Exchanger Design Based On Economic Optimization [J]. Applied Thermal Engineering, 2008, 28:1151-1159.
  • 5GUO Z Y, ZHU H Y, LIANG X G. Entransy--A Physical Quantity Describing Heat Transfer Ability [J]. Int. J. Heat Mass Transfer, 2007, 50:2545--2556.
  • 6李先碧,冯雅康.二氧化碳跨临界循环制冷的研究进展[J].真空与低温,2007,13(3):173-177. 被引量:10
  • 7朱宏晔,陈泽敬,过增元.(火积)耗散极值原理的电热模拟实验研究[J].自然科学进展,2007,17(12):1692-1698. 被引量:44
  • 8Bejan A.Entropy Generation Through Heat and Fluid Flow[]..1982
  • 9Onsager L,Machlup S.Fluctuations and irreversible processes[].Physical Review.1953
  • 10XIA Z Z,LI Z X,GUO Z Y.Heat Conduction:HighConductivity Construction Based on Biological Evolution[].Heat Transfer Proceeding of the Twelfth International Heat Transfer Conference.2002

共引文献105

同被引文献14

  • 1过增元,梁新刚,朱宏晔.(火积)——描述物体传递热量能力的物理量[J].自然科学进展,2006,16(10):1288-1296. 被引量:119
  • 2金纪峰.采用微通道换热器的二氧化碳汽车空调系统研究[D].上海:上海交通大学机械与动力工程学院制冷与低温工程研究所,2010.
  • 3Bejan A. Entropy generation through heat and fluid flow [M]. New York: Wiley, 1982.
  • 4Bejan A. Advanced engineering thermodynamics [ M ]. New York: Wiley, 1988.
  • 5Hesselgreaves J E. Rationalisation of second law analysis of heat exchangers [ J ]. International Journal of Heat & Mass Transfer, 2000, 43 ( 22 ) :4189-4204.
  • 6连之伟.热值交换原理与设备[M].2版.北京:中国建筑工业出版社,2006:194-196.
  • 7Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flows[ J ]. International Chemi- cal Engineering, 1976, 16(2) : 359-368.
  • 8杨世明,陶文铨.传热学[M].4版.北京:高等教育出版社.2007:250-252.
  • 9郭江峰,程林,许明田.[火积]耗散数及其应用[J].科学通报,2009,54(19):2998-3002. 被引量:46
  • 10许明田,程林,郭江峰.[火积]耗散理论在换热器设计中的应用[J].工程热物理学报,2009,30(12):2090-2092. 被引量:39

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部