期刊文献+

化学链燃烧中Fe氧化过程产物层生长特性 被引量:2

Growth Mechanism of the Product Layer During Fe Oxidation in Chemical Looping Combustion
原文传递
导出
摘要 利用TGA、SEM研究了化学链燃烧中Fe氧化反应过程产物层的生长机理,以及产物层形貌对化学反应动力学的影响。考虑了不同的反应条件,包括氧化时间、反应温度、O_2浓度的影响。实验结果表明,氧化产物呈三维岛状生长,反应初期产物岛较小但密度较大,随着反应的进行,产物岛不断长大,但密度先减小后增加;温度及O_2浓度对产物层生长均有影响。产物岛的成核与生长改变了产物层的表观形貌,减小了表观反应速率。 The growth mechanism of the product layer during Fe oxidation in chemical looping combustion was studied with a thermo-gravimetric analysis (TGA) and a scanning electron microscopy (SEM). The surface morphology of the product layer and its effect on the reaction kinetics were researched. The oxidation time, reaction temperature, and the oxygen concentration were considered. It was found that the oxidation product appeared as dispersed, three-dimensional shaped islands. At the beginning of the reaction, the islands were small with high density. As the oxidation continued, the size of the islands became larger, while the density decreased at first, then increased. Both temperature and oxygen concentration had influence on the growth of the product layer. The nucleation or growth of the islands changed the surface morphology of the product layer, and thus decreased the apparent reaction rate.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第1期183-186,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51061130535) 国家重点基础研究发展(973)计划课题(No.2011CB707301) 清华大学自主科研项目资助(No.51376105)
关键词 化学链 成核 生长 产物层 气固反应 chemical looping nucleation growth product layer gas-solid reaction
  • 相关文献

参考文献11

  • 1Lyngfelt A, Leckner B, Mattisson T. A Fluidized Bed Combustion Process With Inherent CO2 Separation; Ap- plication of Chemical-Looping Combustion [J]. Chemical Engineering Science, 2001, 56(10): 3101 3113.
  • 2Mattisson T, Lyngfelt A, Cho P. The Use of Iron Oxide as an Oxygen Carrier in Chemical Looping Combustion of Methane With Inherent Separation of CO2 [J]. Fuel, 2001, 80(13): 1953 1962.
  • 3YANG Jingbiao, CAI Ningsheng, LI Zhenshan. Reduc- tion of Iron Oxide as an Oxygen Carrier by Coal Pyrol- ysis and Steam Char Gasification Intermediate Products [J]. Energy 8z Fuels, 2007, 21(6): 3360 3368.
  • 4Silcox G D, Kramlich J C, Pershing D W. A Mathematical-Model for the Flash Calcination of Dis- persed CaCO3 and Ca(OH)2 Particles [J]. Ind Eng Chem Res, 1989, 28:155 160.
  • 5Garcia-Labiano F, de Diego L F, Adanez J, et al. Tem- perature Variations in the Oxygen Carrier Particles Dur- ing their Reduction and Oxidation in a Chemical-Looping Combustion System [J]. Chem Eng Sci, 2005, 60:851-862.
  • 6Bhatia S K. The Effect of Pore Structure on the Kinetics of Fluid-Solid Reactions [D]. University of Pennsylvania, 1981.
  • 7Hossain M M, de Lasa H I. Reduction and Oxidation Kinetics of Co-Ni/A1203 Oxygen Carrier Involved in a Chemical-Looping Combustion Cycles [J]. Chem Eng Sci, 2010, 65:98 106.
  • 8Wagner C. Beitrag zur Theorie des Anlaufvorgangs [M]. ZeitsehriftfiirPhysikalischeChemie, 1933, B41:25-41.
  • 9Cabrera N, Mott N F. Theory of Oxidation of Metals [J]. Rep Prog Phys, 1949, 12:163 184.
  • 10MarksL D. Modified Wulff Constructions for Twinned Particles [J]. Journal of Crystal Growth, 1983, 61(3): 556 566.

同被引文献79

  • 1郑瑛,池保华,王保文,郑楚光.燃煤CO_2减排技术[J].中国电力,2006,39(10):91-94. 被引量:17
  • 2FAN L S. Chemical Looping System for Fossil Energy Conversions[M]. Washington DC: Wiley, 2010.
  • 3LUO S, ZENG L, XU D, et al. Shale gas-to-sygas chemical looping process for stable shale gas conversion to high purity sygas with a H2 : CO ratio of 2 : l[J]. Energy Environmental Science, 2014, 7 ( 12 ): 4104-4117.
  • 4ISHIDA M, ZHENG D, AKEHATA T. Evaluation of a chemical-looping combustion power-generation system by graphic exergy analysis[J]. Energy, 1987, 12(2): 147-154.
  • 5RICHTER H, HNOCHE K. Reversibility of Combustion Processes[M]. In: GAGGIOLI R A, Ed. ACS Symposium Series. Washington, DC: American Chemistry Society, 1983: 71-86.
  • 6MOGHTADERI B. Review of the recent chemical looping process developments for novel energy and fuel applications[J]. Energy Fuels, 2012, 26(1): 15-40.
  • 7ISHIDA M, JIN H. A new advanced power-generation system using chemical Looping combustion [J ]. Energy, 1994, 19(4) : 415-422.
  • 8CONNELL D, DUNKERLEY M. Techno-economic analysis of a coal direct chemical looping power plant with carbon dioxide capture [C]//Proceedings of the 37th International Technical Conference on Clean Coal and Fuel Systems, Clearwater, USA, 2012: 29-40.
  • 9SRIDHARD, TONG A, KIM H, et al. Syngas chemical looping process: Design and construction of a 25 kW(th) subpilot unit[J]. Energy Fuels, 2012, 26 (4) : 2292-2302.
  • 10TONG A, SRIDHAR D, SUN Z, et al. Continuous high purity hydrogen generation from a syngas chemical looping 25 kWth sub-pilot unit with 100% carboncapture[J]. Fuel, 2013, 103: 495-505.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部