期刊文献+

研发投入的非对称效应、技术收敛与生产率增长悖论——以中国高技术产业为例 被引量:21

The Asymmetric Effects of R&D Input,Technology Convergence and Productivity Paradox——Taking Chinese High-tech Industry for Example
原文传递
导出
摘要 本文在新增长理论的框架下构建了研发投入非对称效应与生产率分解的理论模型,选取门限面板数据模型,研究了中国高技术产业中研发投入对全要素生产率增长、技术效率和技术进步的差异化影响。研究结论表明,随着研发投入的积累,中国高技术产业生产率增速逐渐下降,并且研发存量对全要素生产率(TFP)增长呈现先减弱后增强的影响,研发投入的生产率悖论特征凸显。研发存量对技术效率的提升效应总体显著,同时,也呈现出明显的非对称效应。技术进步方面,研发投入没有促进基础科学的突破性进展、科技成果转化率低、高技术产业创新的难度增大和风险上升,导致研发累积的同时,高技术产业技术进步增速下降,技术进步增速下降也是高技术产业中全要素生产率增速减缓的主要原因。本文还研究了人力资本、技术水平变量对技术变动各组成部分的差异化影响,通过更换门限变量验证了估计结果的稳健性。 R&D inputs have important impacts on output growth, productivity enhancement and technological progress. High-tech industry plays an important role in promoting R&D capital accumulation. Chinese high-tech in- dustry R&D inputs have achieved a sustained and rapid growth during the year 1995 to 2011. Meanwhile, estima- tion results show that the TFP growth of Chinese high-tech industry has experienced a descend course since 2004. Therefore. scholars focus on the issue of the effectiveness of hih-tech industry R&D input.
作者 张同斌
出处 《经济管理》 CSSCI 北大核心 2014年第1期131-141,共11页 Business and Management Journal ( BMJ )
基金 国家社会科学基金重大项目"‘十二五'时期宏观经济运行动态监测分析研究"(10zd&10) 国家自然科学基金项目"中国高技术产业R&D投入对技术创新的内在驱动机制研究:结构变化 两面性与政策效应"(71303035)
关键词 研发投入 高技术产业 技术效率 技术进步 门限面板数据模型 Key Words:R&D input high-tech industry technical efficiency technological progress threshold panel da-ta model
  • 相关文献

参考文献22

  • 1Chang H. C. , Su C. W. Is R&D Always Beneficial [ J ]. Review of Pacific Basin Financial Markets and Policies, 2010,13, ( 1 ) : 157 - 174.
  • 2Coccia M. What is the Optimal Rate of R&D Investment to Maximize Productivity Growth [ J ]. Technological Forecasting and Social Change ,2009,76, (3) :433 - 446.
  • 3Grossman G. M. ,Helpman E. Innovation and Growth in the Global Economy [ M]. Cambridge MA:MIT Press, 1991.
  • 4Hansen B. E. Threshold Effects in Non-dynamic Panels : Estimation, Testing and Inference [ J ]. Journal of Econometrics, 1999, (93) :345 -368.
  • 5Jefferson G. H. , Bai H. M. , Guan X. J. and Yu X. Y. R&D Performance in Chinese Industry [ J ]. Economics of Innovation and New Technology,2006, ( 15 ) :345 - 366.
  • 6Jou J. B., Lee T. R&D Investment Decision and Optimal Subsidy [ J ]. R&D Management,2001,31, (2) : 137 - 148.
  • 7Kort P. M. Optimal R&D Investments of the Firm [J]. OR Spektrum,1998, (20) :155 -164.
  • 8Koussis N., Martzoukos S. H. ,Trigeorgis L. Real R&D Options with Time-to-learn and Learning-by-doing [ J ]. Annals of Op- erations Research,2007,151, ( 1 ) :29 - 55.
  • 9Lee C. Y. Learning-by-doing in R&D, Knowledge Threshold, and Technological Divide [ J ]. Journal of Evolutionary Econom- ics,2012,22, ( 1 ) : 109 - 132.
  • 10Nunes P. M. , Serrasqueiro Z. , Li tao J. Assessing the Nonlinear Nature of the Effects of R&D Intensity on Growth of SMEs: A Dynamic Panel Data Approach [J]. Journal of Evolutionary Economics ,2013,23, (1) :97 -128.

二级参考文献161

共引文献1361

同被引文献288

引证文献21

二级引证文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部