期刊文献+

热处理温度对锂氧气电池用Co-N/C催化剂催化性能的影响(英文) 被引量:1

Influence of Calcination Temperature on Performances of Co-N/C Electrocatalysts for Li/O_2 Cells
下载PDF
导出
摘要 开发低成本、高效的空气电极催化剂是发展锂空气电池的关键课题之一.采用邻菲咯啉(phen)为配体制备Co(phen)2配合物,负载于BP2000碳载体上,并分别在600、700、800和900°C的温度下进行热处理,制备得到碳支撑的Co-N催化剂(Co-N/C).对催化剂的氧还原反应/析氧反应(ORR/OER)活性进行了表征,并且与典型的CoTMPP/C催化剂进行了比较.同时研究了煅烧温度对Co-N/C催化剂的组成和结构的影响.电化学测试结果表明,热处理温度为700-800°C时催化剂具有较好的电化学性能.Co-N/C催化剂具有电化学性能优良与低成本的特点,是一种良好的锂氧气电池催化剂. The development of low-cost and effective electrocatalysts for air electrodes is critical for practical applications of lithium/oxygen batteries. In the present work, phenanthroline (phen) was used as a ligand to prepare a Co(phen)2 complex. The Co(phen)2 complex was coated on BP2000 and then heat treated at 600, 700, 800, and 900 ℃, to obtain carbon-supported Co-N (Co-N/C) catalysts. The catalytic activities in oxygen reduction reaction/oxygen evolution reaction (ORR/OER) of the prepared catalysts were measured and compared with those of a typical carbon-supported cobalt tetramethoxyphenylporphyrin (CoTMPP/C) catalyst. The influence of the calcination temperature on the composition and structure of the Co-N/C catalysts was investigated. Electrochemical tests showed that the Co-N/C catalysts prepared at 700 and 800 ℃ gave better performances, comparable to that of the CoTMPP/C catalyst. The superior electrochemical performance of the prepared Co-N/C catalysts and the low cost of the phenanthroline chelating agent make Co-N/C a promising cheap catalyst for lithium/oxygen batteries.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第1期150-156,共7页 Acta Physico-Chimica Sinica
基金 The project was supported by the National Key Basic Research Program of China(973)(2014CB932303) National Natural Science Foundation of China(21073120,21336003,21006063)~~
关键词 可充电锂氧气电池 氧电极 ORR OER催化剂 Co(phen) 配合物 焙烧温度…… Rechargeablelithium/oxygen battery Oxygen electrode ORR/OERcatalyst Cobalt phenanthroline complex Calcination temperature
  • 相关文献

参考文献28

  • 1Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a.
  • 2Lee, J. S.; Kim, S. T.; Cao, R.; Choi, N. S.; Liu, M.; Lee, K. T.; Cho, J. Adv. Energy Mater. 2011, 1, 34. doi: 10.1002/aenm.201000010.
  • 3Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. Science 2012, 337, 563. doi: 10.1126/science.1223985.
  • 4Wang, H.; Liao, X. Z.; Li, L.; Chen, H.; Jiang, Q. Z.; He, Y.; Ma, Z. F. J.Electrochem. Soc. 2012, 159, A1874.
  • 5Lu, J.; Qin, Y.; Du, P.; Luo, X.; Wu, T.; Ren, Y.; Wen, J.; Miller, D. J.; Millera, J. T.; Amine, K. RSC Adv. 2013, 3, 8276. doi: 10.1039/c3ra40451j.
  • 6Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S. J. Electrochem. Soc. 2012, 159, R1.
  • 7Huang, B. W.; Liao, X. Z.; Wang, H.; Wang, C. N.; He, Y. S.; Ma, Z. F. Journal of Electrochemical Society 2013, 160, A1112.
  • 8Kraytsberg, A.; Ein-Eli, Y. J. Power Sources 2011, 196, 886. doi: 10.1016/j.jpowsour.2010.09.031.
  • 9Wang, H.; Liao, X. Z.; Jiang, Q. Z.; Yang, X. W.; He, Y. S.; Ma, Z. F. Chin. Sci. Bull. 2012, 57, 1959. doi: 10.1007/s11434-011-4944-7.
  • 10Débart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. Angew. Chem. Int. Edit. 2008, 47, 4521.

同被引文献93

  • 1Littauer, E. L.; Tsai, K. C. J. Electrochem. Soc. 1976, 123, 771. doi: 10.1149/1.2132931.
  • 2Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1. doi: 10.1149/1.1836378.
  • 3Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P.G. J. Am. Chem. Soc. 2006, 128, 1390. doi: 10.1021/ja056811q.
  • 4Wang, Y. G.; Zhou, H. S. J. Power Sources 2010, 195, 358. doi: 10.1016/j.jpowsour.2009.06.109.
  • 5Kumar, B.; Kumar, J.; Leese, R.; Fellner, J. P.; Rodrigues, S. J.; Abraham, K. M. J. Electrochem. Soc. 2010, 157, A50. doi: 10.1149/1.3256129.
  • 6Ren, X. M.; Zhang, S. S.; Tran, D. T.; Read, J. J. Mater. Chem. 2011, 21, 10118. doi: 10.1039/C0JM04170J.
  • 7McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. C 2012, 116, 23897. doi: 10.1021/jp306680f.
  • 8Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2009, 113, 20127. doi: 10.1021/jp908090s.
  • 9Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178. doi: 10.1021/jp102019y.
  • 10Peng, Z. Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y. H.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angew. Chem. Int. Edit. 2011, 50, 6351. doi: 10.1002/anie.201100879.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部