期刊文献+

Gauss白噪声激励下分数阶导数系统的非平稳响应 被引量:3

Non-Stationary Response of a Stochastic System With Fractional Derivative Damping Under Gaussian White-Noise Excitation
下载PDF
导出
摘要 研究了Gauss(高斯)白噪声激励下具有分数阶导数阻尼的非线性随机动力系统的非平稳响应.应用等价线性化方法将非线性系统转化为等价的线性系统,之后采用随机平均法获得系统响应满足的FPK(Fokker-Planck-Kolmogorov)方程,其中分数阶导数近似为一个周期函数.使用Galerkin方法求解FPK方程进而得到系统的近似非平稳响应.数值结果验证了方法的正确性和有效性. Non-stationary response of a nonlinear stochastically dynamical system with frac- tional derivative damping under Gaussian white-noise excitation was investigated. Based on the equivalent linearization method, the orial nonlinear system was converted to a linear system with respect to the vibration amplitude and phase, then the stochastic averaging method was applied to obtain the FPK equation, in which the fractional derivative was approximated by a periodic function. The approximate non-stationary response of the FPK equation was derived with Galerkin method. Numerical results verify the efficiency and correction of the proposed method.
出处 《应用数学和力学》 CSCD 北大核心 2014年第1期63-70,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11302157 11202155) 中央高校基本科研业务费专项资金(K5051370008) 中国与塞尔维亚科技合作项目(2-14)~~
关键词 非平稳响应 分数阶导数 随机平均法 GALERKIN方法 non-stationary response fractional derivative stochastic averaging method Galerkin method
  • 相关文献

参考文献13

  • 1Bagley R L, Torvik PJ. A theoretical basis for the application of fractional calculus to vis?coelasticityJ J].Journal oj Rheology, 1983,27(3): 201-210.
  • 2Bagley R L, Torvik PJ. Fractional calculus in the transient analysis of viscoelastically damped structure[J]. American Institute oj Aeronautics and AstronauticsJournal, 1985, 23 ( 6) : 918-925.
  • 3Gaul L, Klein P, Kemple S. Impulse response function of an oscillator with fractional deriva?tive in damping description[J]. Mechanics Research Communications, 1989, 16 (5): 297- 305.
  • 4Makris N, Constaninou M C. Spring-viscous damper systems for combined seismic and vibra?tion isolationJ J]. Earthquake Engineering and Structural Dynamics, 1992, 21( 8) : 649-664.
  • 5Spanos P D, Zeldin B A. Random vibration of system with frequency-dependent parameters or fractional derivatives[J].Journal Engineering Mechanics, 1997, 123 ( 3) : 290-292.
  • 6Drozdov D. Fractional oscillator driven by a Gaussian noise[J]. Physica A: Statistical Me?chanics and Its Application, 2007, 376( 15) : 237-245.
  • 7Huang Z L,Jin X L. Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative[J].Journal oj Sound and Vibration, 2009, 319(3/5): 1121-1135.
  • 8Chen L C, Zhu W Q. First passage failure of SDOF nonlinear oscillator with lightly fractional derivative damping under real noise excitation[J]. Probabilistic Engineering Mechanics, 2011, 26(2) : 208-214.
  • 9Chen L C, Zhu W Q. StochasticJump and bifurcation of Duffing oscillator with fractional de?rivative damping under combined harmonic and white noise excitations[J]. InternationalJournal oj Non-Linear Mechanics, 2011, 46( 10): 1324-1329.
  • 10Hu F, Chen L C, Zhu W Q. Stationary response of strongly non-linear oscillator with fraction?al derivative damping under bounded noise excitation[J] . InternationalJournal oj Non-Line?ar Mechanics, 2012, 47( 10): 1081-1087.

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部