期刊文献+

语义级深度迁移的2D转3D算法 被引量:4

2D-to-3D Method via Semantic Depth Transfer
下载PDF
导出
摘要 海量视频数据推动了基于数据驱动的单目图像深度估计研究.针对现有方法存在不同对象深度分配层次感不够的问题,在相似场景具有相似深度的假设前提下,提出一种基于语义级分割和深度迁移的单目图像2D转3D的方法.首先使用分割迁移模型将输入图像的像素进行语义级分类;然后通过语义级分类结果对场景匹配进行约束;再次利用SIFT流建立输入图像和匹配图像间像素级对应关系,并由此将匹配图像的深度迁移到输入图像上;最后通过语义级分割约束的最优化深度融合模型为不同对象区域分配深度值.Make3D测试数据的实验结果表明,该方法估计的深度质量比现有深度迁移方法更高,与最优化融合深度迁移算法相比,平均对数误差和平均相对误差分别降低0.03和0.02个点. The research of depth estimation from a single monocular image is promoted by available massive video data. Under the assumption that photometrically similar images likely have similar depth fields, in this paper we propose a novel 2D-to-3D method based on semantic segmentation and depth transfer to estimate depth information from a single input image. Firstly, semantic segmentation of the scene is performed and the semantic labels are used to guide the depth transfer. Secondly, pixel-to- pixel correspondences between the input image and all candidates are estimated through SIFT flow. Then, each candidate depth is warped by SIFT flow to be a rough approximation of the input's depth map. Finally, depth is assigned to different objects based on semantic labels guided depth fusion. The experimental results on Make3D datasets demonstrate that our algorithm outperforms the existing depth transfer methods where the average log error and relative error were reduced by 0.03 and 0.02 respectively.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第1期72-80,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61071173) 浙江省自然科学基金(LY12F01001 Y1100253 Y1110086) 宁波市自然科学基金(2012A610043 2012A610111 2012A610186)
关键词 数据驱动 深度估计 深度迁移 语义分割 2D转3D data driven depth estimation depth transfer semantic segmentation 2D-to-3D
  • 相关文献

参考文献30

  • 1刘伟,吴毅红,胡占义.电影2D/3D转换技术概述[J].计算机辅助设计与图形学学报,2012,24(1):14-28. 被引量:14
  • 2郑芳炫;杨志强.以消失点为基础下从单张影像中估测深度[J]信息技术与应用,2006(3):229-235.
  • 3Sebastiano B,Salvatore C,Marco L C. Depth map generation by image classification[A].Bellingham:Society of Photo-Optical Instrumentation Engineers,2004.95-104.
  • 4王学梅,孙即祥.基于高阶LLF和WENO算法的透视SFS[J].中国图象图形学报,2011,16(2):300-304. 被引量:4
  • 5Guo G,Zhang N,Huo L S. 2D to 3D convertion based on edge defocus and segmentation[A].Los Alamitos:IEEE Computer Society Press,2008.2181-2184.
  • 6Jung Y J,Baik A,Kim J. A novel 2D-to-3D conversion technique based on relative height-depth cue[A].Bellingham:Society of Photo-Optical Instrumentation Engineers,2009.72371U.
  • 7蓝建梁,丁友东,黄东晋,吴冏.基于多尺度纹理能量测度的单幅图像深度估计[J].计算机工程与设计,2011,32(1):224-227. 被引量:7
  • 8Saxena A,Chung S H,Ng A Y. 3D depth reconstruction from a single still image[J].{H}International Journal of Computer Vision,2008,(1):53-69.
  • 9Saxena A,Sun M,Ng A Y. Make3D:learning 3D scene structure from a single still image[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(5):824-840.
  • 10Saxena A. Make3D datasets[OL].http://make3d.cs.cornell.edu/,2012.

二级参考文献68

  • 1张大志,王勇涛,田金文,王长青,郭勤.基于单目视觉系统的远距离场景重建算法研究[J].宇航学报,2008,29(1):289-294. 被引量:9
  • 2仲思东,熊军,刘勇.基于全周多视角的三维重建技术[J].机器人,2004,26(6):558-562. 被引量:7
  • 3张淑芳,李华.基于一幅散焦图像的深度估计新算法[J].光电子.激光,2006,17(3):364-367. 被引量:6
  • 4J.Michels,A.Saxena,and A.Y.Ng. High Speed Obstacle Avoidance Using Monocular Vision and Reinforcement Learning. In ICML,2005.
  • 5H.Guo and Y.Lu.Depth Detection of Targets in a Monocular Image Sequence.18th Digital Avionic Systems Conference, 1999.
  • 6G.Gini and A.Marchi.Indoor Robot Navigation with Single Camera Vision.In PRIS,2002.
  • 7E.R.Davies.Laws' texture energy in TEXTURE.In Machine vision:Theory,Algorithms,Practicalities 3th edition.2005.Pg 756-779.
  • 8Gerhard,Winkler.lmage.Analysis,Random Fields and Dynamic Monte Carlo Methods:A Mathematical Introduction. Springer-Verlag, 1995.
  • 9Ashutosh Saxena,Sung H.Chung,and Andrew Y.Ng.Leaming depth from single monocular images.In NIPS 18,2006.
  • 10Jian Li, Chellappa R. Structure from planar motion [J]. IEEE Transactions on Image Processing, 2006,15(11):3466-3477.

共引文献23

同被引文献62

  • 1张英静,李素梅,卫津津,臧艳军.立体图像质量的主观评价方案[J].光子学报,2012,41(5):602-607. 被引量:9
  • 2徐小云,颜国正,鄢波.一种新型管道检测机器人系统[J].上海交通大学学报,2004,38(8):1324-1327. 被引量:35
  • 3Vosters I., Haan G D. Efficient and stable sparse-to-dense con- version for automatic 2-D to 3-D conversion[J]. IEEE Transac- tions on Circuits and Systems for Video Technology, 2013,23 (3) :.373-386.
  • 4Dong W, Yang X, Shi G. Compressive sensing via reweighted TV and nonlocal sparsity regularization[J]. Electronics Letters, 2013,49(3) : 184-186.
  • 5Hu Y, Jacob M. Higher degree total variation (HDTV) regulari- zation for image recovery[J]. IEEE Transactions on Image Pro- cessing,2012,21 (5) :2559-2571.
  • 6Zhang J, I.iu S H, Xiong R Q, et al. Improved total variation based image compressive sensing recovery by nonlocal regulari- zation[C]//Proc of IEEE International Symposium on Circuits and Systems. Los Alamitos: IEEE Computer Society Press, 2013:2836-2839.
  • 7Hawe S,Kleinsteuber M,Diepold K. Dense disparity maps from sparse disparity measurements[C]//Proc of IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2011 : 2126-2133.
  • 8Levin A,l.ischinski D,Weiss Y. A closed-form solution to natu- ral image matting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30 (2) : 228-242.
  • 9Zhuo S J, Sim T. Defocus map estimation from a single image [J]. Pattern Recognition,2011,44(9) : 1852-1858.
  • 10Vosters L, Haan G D. Efficient and stable sparse-to-dense con- version for automatic 2-D to 3-D conversion. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23 ( 3 ) : 373-386.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部