期刊文献+

并行免疫离散粒子群优化算法求解背包问题 被引量:4

Parallel Binary Particle Swarm Optimization Algorithm Based on Immunity for Solving Knapsack Problem
下载PDF
导出
摘要 针对离散变量的优化问题,提出了一种改进的二进制混合粒子群优化算法(MHBPSO)。MHBPSO算法利用生物免疫机理和并行运算原理简化算法结构,并针对后期可能出现局部收敛、停滞的问题,从保持粒子群位置的多样性入手,引入了鲶鱼效应和交叉变异操作。仿真实验比较了几种成熟的离散优化算法在解决典型0-1背包问题时的性能。结果表明MHBPSO算法结构简单、收敛速度快、全局寻优能力强,是一种解决离散优化问题的有效方法。 To realize optimization problems with discrete binary variables, a modified hybrid binary particle swarm optimization (MHBPSO) was proposed. To simplify the structure of MtlBPSO algorithm, the theories of immunity in biology and parallel computation were introduced. The catfish effect and the operation of crossover and mutation were also embedded in order to avoid the local convergence and stagnation and maintain the diversity of swarm's searching positions during the later period of MHBPSO algorithm. Simulation performance of different mature discrete optimization algorithms were compared by solving classical 0-1 knapsacks problems. The simulation results show that MHBPSO has a simple structure, high convergence speed and superior global optimization capability, which is an efficient method for discrete optimization problems.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第1期56-61,共6页 Journal of System Simulation
关键词 离散粒子群优化 免疫 并行运算 鲶鱼效应 交叉变异 背包问题 binary particle swarm optimization immunity parallel computation catfish effect crossoverand mutation knapsack problems
  • 相关文献

参考文献14

  • 1Eberhart R, Kennedy J. A new optimizer using particle swarm theory [C]// Proceedings of the Sixth International Symposium on Micro machine and Human Science. USA: IEEE Press, 1995: 39-43.
  • 2Shi Y, Eberhart R C. Empirical study of particle swarm optimization [C]// Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE Press, 1999: 1945-1950.
  • 3Shi Y, Eberhart R.C. Fuzzy adaptive particle swarm optimization [C]// The IEEE Congress on Evolutionary Computation. San Francisco, USA: IEEE, 2001: 103-106.
  • 4Cai Jie-jin, Ma Xiao-qian, Li Lixiang, Peng Haipeng. Chaotic particle optimization for economic dispatch considering the generator constraints [J]. Energy Conversion and Management (S0196-8904), 2007, 48(2): 645-653.
  • 5Kennedy J, Eberhart R, A discrete binary version of the particle swarm algorithm [C]// Proceeding of the World Multiconference on Systemics, Cybernetics and Informatics. Piscataway, NJ, USA: IEEE Press, 1997: 4104-4109.
  • 6沈林成,霍霄华,牛轶峰.离散粒子群优化算法研究现状综述[J].系统工程与电子技术,2008,30(10):1986-1990. 被引量:56
  • 7奚茂龙,孙俊,吴勇.一种二进制编码的量子粒子群优化算法[J].控制与决策,2010,25(1):99-104. 被引量:21
  • 8张长胜,孙吉贵,欧阳丹彤.一种自适应离散粒子群算法及其应用研究[J].电子学报,2009,37(2):299-304. 被引量:74
  • 9罗健文.基于交叉操作的二进制混合粒子群算法求解背包问题[J].中南林业科技大学学报,2011,31(9):170-174. 被引量:4
  • 10Afshinmanesh Farzaneh, Marandi Alireza. A novel binary particle swarm optimization method using artificial immune system [Z]. Serbia & Montenegro, Belgrade, USA: IEEE Press, November 2005 22-24.

二级参考文献56

共引文献644

同被引文献29

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部