期刊文献+

一种改进的粒子滤波算法应用于故障诊断 被引量:5

Improved Algorithm of Particle Filter Applied to Fault Diagnosis
下载PDF
导出
摘要 为了解决粒子滤波技术中粒子退化的问题,出现了重采样算法。传统的重采样算法如系统重采样,分层重采样等普遍运算时间较长,耗费去很多机时,有时难以满足对实时性要求较高系统的故障诊断。在对粒子滤波技术进行分析的基础上,提出了一种新的重采样算法—"斐波那契查找重采样"。并利用基于残差生成的系统故障诊断方法,将改进的重采样算法应用于传感器故障诊断中。通过对电磁流量传感器的信号处理系统为实验对象进行仿真分析,可以看出,该算法预测系统状态的精度与其它算法基本一致,能有效的进行故障诊断,并且实时性较好,运算时间较快。 To solve the degeneracy problem with particle filters technology, Resampling algorithms appeared. The common characteristics with traditional resampling algorithms, such as system resampling, residual resampling, were all high complexity, and more machine-time was cost. So it could hardly satisfy the real-time requirement of the online diagnostic system. Particle filters were analyzed and a new resampling algorithm called "Fibonacci Search resampling" was proposed. And using the method of system fault diagnosis based-on residual generation, new resampling algorithm was applied to the sensor faults diagnosis. The simulation of signal processing system of an electromagnetic flow sensor results show that the proposed algorithm has the same precision, and it is effective for fault diagnosis ,better real-time and faster running time.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第1期62-66,共5页 Journal of System Simulation
关键词 故障诊断 粒子滤波 退化 重采样算法 fault diagnosis particle filter degradation resampling algorithm
  • 相关文献

参考文献10

  • 1D R Espinoza-Trejo, D U Campos-Delgado. Detection and isolation of actuator faults for a class of non-linear systems with application to electric motors drives [J]. lET Control Theory and Applications (S1751-8644), 2009, 3(10): 1317-1329.
  • 2Fragkoulis Dimitrios, Li Zetao, Roux Gilles, Dahhou Boutaib. Application of a Model Based Fault Isolation Method for Nonlinear Dynamic Systems [C]// Emerging Technologies & Factory Automation, IEEE Conference 2009. Mallorca, Spain, 22-25 Sept. 2009. USA: IEEE, 2009: 1-6.
  • 3Balaje T Thumati, S Jagannathan. A Model-Based Fault-Detection and Prediction Scheme for Nonlinear Multivariable Discrete-Time Systems with Asymptotic Stability Guarantees [J]. IEEE Transactions on neural (S 1045-9227), 2010, 21 (3): 404-423.
  • 4朱林富,张三同.基于粒子滤波的故障诊断方法研究[D].北京:北京交通大学,2010.
  • 5Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/nongaussian bayesian state estimation [J]. IEE Proceedings F Radar and Signal Processing (S0956-375X), 1993, 140(2): 107-113.
  • 6Geweke J. Bayesian inference in econometrics models using Monte C-arlo integration [J]. Econometrics (S0012-9682), 1989, 57(6): 1317-1339.
  • 7Doucet A, Godsill S. On sequential Monte Carlo sampling methods for Bayesian filtering [R]. Cambridge, UK: University of Cambridge, 1998: 1-36.
  • 8王婷婷,郭圣权.粒子滤波算法的综述[J].仪表技术,2009(6):64-66. 被引量:10
  • 9朱明芳,吾及.数据结构与算法[M].北京:清华大学出版社,2010,3.
  • 10赵丰,汤磊,张武,赵宗贵.一种高实时性粒子滤波重采样算法[J].系统仿真学报,2009,21(18):5789-5793. 被引量:9

二级参考文献13

  • 1Haykin S Kalman. Filtering and neural networks [ M ]. New York: John Wiley and Sons,2001.
  • 2Doucet A, Godsill S. On sequential Monte Carlo sampling methods for Bayesian fihering [ R ]. Cambridge: University of Cambridge,1998 : 1 - 36.
  • 3Liu J S, Chen R. Sequential Monte Carlo methods for dynamical systems [ J ]. J of the American Statistical Association, 1998,93 ( 5 ) : 1032 - 1044.
  • 4GUSTAFSSON F, GUNNARSSON F, BERGMAN N, et al. Particle filters for positioning, navigation and tracking [ J ]. IEEE Transaction on Signal Processing,2002,50 ( 2 ) :425 - 437.
  • 5KADIRKAMANATHAN V, LI P, JAWARD M H, et al, Particle ,filtering-based fault detection in non-linear stochastic systems [ J ]. International Journal of Systems Science, 2002,33 (4) : 259 -265.
  • 6A Kong, J S Liu, W H Wong. Sequential imputations and Bayesian missing data problems [J]. Journal of the American Statistical Association (S0162-1459), 1994, 89(425): 278-288.
  • 7N J Gordon, D J Salmond, A F M Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. Radar and Signal Processing, IEE Proceedings F, 1993, 140(2): 107-113.
  • 8J S Liu, R Chert. Sequential Monte Carlo Methods for Dynamic Systems [J]. Journal of the American Statistical Association (S0162-1459), 1998, 93(443): 1032-1044.
  • 9M Bolic, P M Djuric, H Sangjin. New resampling algorithms for particle filters [C]// IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03). USA: IEEE, 2003, 211: 589-92.
  • 10M Bolic, P Djuric, S Hong. Resampling Algorithms for Particle Filters: A Computational Complexity Perspective [J]. EURASIP Journal on Applied Signal Processing (S1110-8657), 2004(15) 2267-2277.

共引文献18

同被引文献20

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2王文辉,刘帅,周东华.混杂系统故障诊断方法综述[J].系统工程与电子技术,2006,28(12):1853-1857. 被引量:11
  • 3Arogeti S A, Wang D, Low C B, et al. Energy-based mode tracking of hybrid systems for FDI [ J ]. Systems Man and Cybernetics: Systems, IEEE Transactions on, 2013, 43 ( 1 ) : 14 - 28.
  • 4Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering [ J ]. Statistics and Computing, 2000, 10 ( 3 ) : 197 - 208.
  • 5Candy J V. Bootstrap particle filtering [ J ]. Signal Processing Magazine, IEEE, 2007, 24(4) : 73 -85.
  • 6Liu J S, Chen R, Logvinenko T. A theoretical framework for sequential importance sampling with resampling [ C ]//Sequential Monte Carlo Methods in Practice. Springer New York, 2001 : 225 - 246.
  • 7Tafazoli S, Sun X. Hybrid system state tracking and fault detection using particle filters [ J ]. Control Systems Technology, IEEE Transactions on, 2006, 14(6) : 1078 - 1087.
  • 8Koutsoukos X D. Estimation of hybrid systems using discrete sensors [ C ]//Decision and Control, 2003. Proceedings. 42nd IEEE Conference on. IEEE, 2003 : 155 - 160.
  • 9李卫东,刘曰锋.混杂系统研究综述[J].自动化技术与应用,2008,27(1):1-4. 被引量:5
  • 10赵暾,廖瑛,文援兰.基于EKF残差向量的编队卫星测量器件故障诊断[J].系统仿真学报,2011,23(B07):327-330. 被引量:1

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部