期刊文献+

基于有限元法的梯度材料零件多目标优化设计

Multi-Objective Optimal Design of Graded Material Part Based on Finite Element Method
下载PDF
导出
摘要 针对由两相材料在空间中连续过渡组成的梯度材料零件的多目标优化设计,建立了基于有限元法的梯度材料分析模型,构造了基于网格节点的设计变量,以材料体积分数进行实值编码,采用了外部存档式微遗传算法AMGA进行优化计算,进而提出了梯度材料多目标进化方法进行零件的设计。仿真实例的计算结果表明,该设计方法能够得到满足设计目标和约束条件的解,求解效率和精度较高。 Aiming at multi-objective optimal design of graded material part composed of two-phase materials transmitting smoothly in space, the analysis model for graded material was established based on the finite element method. Real-valued volume fractions of material were encoded according to design variables constructed on the mesh nodes. AMGA (Archive-based Micro Genetic Algorithm) was used to perform the optimization and a method of multi-objective graded material evolution was proposed to design the corresponding parts. An example for simulation and the computation results show that solutions can be found efficiently and accurately while satisfying the design objectives and constraints.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第1期169-172,共4页 Journal of System Simulation
基金 国家"863"重大专项资助课题(2008AA11A139)
关键词 梯度材料 有限元法 多目标优化 实值编码 外部存档式微遗传算法 graded material finite element method multi-objective optimization real-value encoding AMGA
  • 相关文献

参考文献9

  • 1Kadoli R, Ganesan N. Buckling and Free Vibration Analysis of Functionally Graded Cylindrical Shells Subjected to A Temperature- Specified Boundary Condition [J]. Journal of Sound and Vibration (S0022-460X), 2006, 289(3): 450-480.
  • 2Morvan SM. MMa-Rep, A Representation for Multimaterial Solids [D]. SC, USA: Clemson: Clemsun University, 2002.
  • 3Kou XY, Tan ST. Heterogeneous Object Design: An Integrated CAX Perspective [M]// Heterogeneous Objects Modelling and Applications. Germany: Springer-Veflag. 2008: 42-59.
  • 4吴晓军,刘伟军,王天然,温佩芝.距离场定义下异质材料CAD信息建模方法[J].计算机辅助设计与图形学学报,2005,17(2):313-319. 被引量:12
  • 5Shin KH, Lee JK. A Method for FEA-Based Design of Heterogeneous Objects [C]// Proceedings of the 4th International Conference on Geometric Modeling and Processing, GMP 2006, Berlin: Springer, 2006: 663-669.
  • 6Carbonari RC, Silva E, lio CN, et al. Topology Optimization Design of Functionally Graded Bimorph-Type Piezoelectric Actuators [J]. Smart Materials and Strdctures (S0964-1726), 2007, 16 (6) : 2605-2620.
  • 7Tiwari S, Fadel G, Deb K. AMGA2: Improving the Performance of the Archive-Based Micro-Genetic Algorithm for Multi-Objective Optimization [J]. Engineering Optimization (S0305-215X), 2010, 4q(4): 377-401.
  • 8赵温波,杨鹭怡,王立明.径向基概率神经网络的混合结构优化算法[J].系统仿真学报,2004,16(10):2175-2180. 被引量:14
  • 9Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. Evolutionary Computation, IEEE Transactions on (S1089-778X), 2002, 6(2): 182-197.

二级参考文献34

  • 1吴晓军,刘伟军,王天然,温佩芝.改进的基于欧氏距离测度网格模型体素化算法[J].计算机辅助设计与图形学学报,2004,16(4):592-597. 被引量:16
  • 2[11]Reed R. Pruning algorithms-a survey [J]. IEEE Transaction On Neural Networks, 1993, 4 (5): 740-747.
  • 3[12]George B, Michael G. Feed-forward neural networks [J]. IEEE Potentials, 1994, 13 (4): 27-31.
  • 4[13]Karnin E D. A simple procedure for pruning back-propagation trained neural networks [J]. IEEE, Trans. Neural Networks, 1990, 1(2): 239-242.
  • 5[14]Kung S Y, Hu Y H. A Frobenius approximation reduction method (FARM) for determining optimal number of hidden units [A]. Int. Joint Conf. Neural Networks [C], 1989, 1: 443-447.
  • 6[15]Mozer M C, Smolensky P. Skeletonization: A technique for trimming the fat from a network via relevance assessment. Advances in Neural Information Processing (1) [M]. D. S. Turetzky, Ed. (Denver 1989), 1989, 107-115.
  • 7[16]Wynne-Jones M. Constructive algorithms and pruning: improving the multiplayer perceptron [A]. The 13th IMACS World Congress on Computation and Applied Mathematics [C], R.vichnevetsky and J. Miller, Eds., 1991, 747-750.
  • 8[17]Frean M. The upstart algorithm: a method for constructing and training feed-forward networks [J]. Neural Computation, 1990,2: 198-209.
  • 9[18]Fahlman S, Lebiere C. The cascade-correlation learning architecture. Advances in Neural Information Processing System II ed. D. Touretzky, 1990, 524-532.
  • 10[19]Whitely D, Bogart C. The evolutionary of connectivity: pruning neural networks using genetic algorithms [A]. International Joint Conference on neural networks [C], Washington, DC, 1990, 134-137.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部