期刊文献+

基于自适应缩放比例因子的差分进化算法 被引量:7

Improved differential evolution algorithm based on adaptive scaling factor
下载PDF
导出
摘要 针对于差分进化算法在高维多峰函数环境下易早熟和迭代收敛速度较慢的问题,通过引入自适应的缩放比例因子的方法,提出了一个基于自适应缩放比例因子的差分进化算法。通过理论推导改进的差分进化算法可以有效提高差分进化算法对于高维多峰函数全局最优值搜索能力和差分进化算法对于高维优化问题的收敛速度,并且通过形式化证明的方法分析了其可以提高着这些性能的具体原因,实验结果表明了理论推导以及对于改进差分进化算法性质分析的正确性。 Aiming to solve the differential evolution problem of prematurity and low iteration speed under high-dimension multimodal function situation, using the adaptive scaling factor, an improved differential evolution algorithm based on adaptive scaling factor is pre sented. Though theoretical derivation, improved differential evolution algorithm is proofed to be better than standard differential evolution algorithm in global optimum searching ability of multi-dimensional and multi-modal function, as well as in iteration speed under high-dimension multi-modal situation, and the reasons of these improvements are also found by the formal proofing. The correct ness of the theoretical derivation and improvement differential evolution algorithm is also verified by experiment.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第1期261-266,共6页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2013AA01A211)
关键词 差分进化算法 自适应比例因子 高维多峰函数 迭代速度 最优值查找 differential evolution adaptive scaling factor high victoria peak function iteration speed optimal value searching
  • 相关文献

参考文献16

二级参考文献270

共引文献1102

同被引文献57

  • 1田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9. 被引量:183
  • 2马洪斌.FM458在冷轧AGC系统中的应用[J].重工与起重技术,2006(2):11-13. 被引量:3
  • 3申晓宁,胡维礼.一种多目标优化合作型协同进化算法[J].计算机仿真,2007,24(2):157-161. 被引量:3
  • 4连家创 刘宏民.板厚板形控制[M].北京:兵器工业出版社,1996..
  • 5Sk Minhazul Islam. Swagatam Das, Saurav Cihosh. etal. An adaptive differential evolution algorithm withnovel mutation and crossover strategies for global nu-merical optimization[J], IEP'E Transactions on Systt-rms,2012. 42(2):482-486.
  • 6Li Xiao Long. A modified FID tunning fitness functionbased on evolutionary algorithm [J], Electrical Engi-neering. 2012.107:1191-1200.
  • 7Liao T,Stutzle T.Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization[C]//Evolutionary Computation(CEC),2013 IEEE Congress on IEEE,2013:1938-1944.
  • 8杨业华.普通遗传学(第二版)[M].高等教育出版社,2008,298-300.
  • 9Wang Y,Cai Z,Zhang Q.Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters[J].Evolutionary Computation IEEE Transactions on,2011,15(1):55-66.
  • 10Qin A K,Huang V L,Suganthan P N.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolutionary Computation,2009,13(2):398-417.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部