期刊文献+

基于类别参与度的社区问答专家发现方法 被引量:12

Category participation-based approach to find experts for community question answer services
下载PDF
导出
摘要 为了提高社区问答系统的服务质量和效率,使得提问用户尽快得到具权威性的满意回答,研究了专家发现问题,提出了一种基于用户类别参与度的专家发现方法。计算用户在每一个类别的初步专家得分,以及两两类别间的相似度,得到用户对每一个类别的参与度,线性综合用户在本类别的初步专家得分和其它相近类别的参与度得分,即为用户在本类别的最终专家得分。实验是在Yahoo!Answers上抽取的真实标注数据集上进行的。实验结果表明,该方法有效且可行。 To improve the service quality and efficiency of community-based question answering systems, and to satisfy the users as soon as possible by making the users' questions answered authoritatively, the problem of identifying and discerning expert users is studied. To solve the problem, a method is presented which is based on category participation to find experts in commu nity-based question answering services. Firstly, the original expert score of the user in each category is calculated, as well as the similarity between the categories. Secondly, the category participation of the user for every category is obtained. Finally, the o verall expert score of the category is a linear combination of original expert score in that category and participation score of other similar categories. The experiments are conducted on the question-answer threads of the Yahoo! Answers, and the final results show that this method has a good performance.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第1期333-338,共6页 Computer Engineering and Design
基金 国家863高科技研究发展计划基金项目(2006AA01Z151) 国家自然科学基金项目(60973068 61277370) 辽宁省自然科学基金项目(201202031) 教育部留学回国人员科研启动基金 高等学校博士学科点专项科研基金资助课题基金项目(20090041110002)
关键词 社区问答 专家发现 链接分析 类别参与度 相似度计算 community question answer experts finding link analysis category participation similarity calculation
  • 相关文献

参考文献12

  • 1Chen Lin,Nayak R. Expertise analysis in a question answer portal for author ranking[A].Washington,USA,2008.134-140.
  • 2Kao Weichen,Liu Duenren,Wang Shiuwen. Expert finding in question-answering websites:A novel hybrid Approach[A].2010.867-871.
  • 3Riahi F,Zolaktaf Z,Shafiei M. Finding expert users in community question answering[A].{H}Lyon,France,2012.791-798.
  • 4Qu Mingcheng,Qiu Guang,He Xiaofei. Probabilistic question recommendation for question answering communities[A].CM,2009.1229-1230.
  • 5LIU Mingrong,LIU Yicen,YANG Qing. Predicting best answerers for new questions in community question answering[A].Springer Berlin Heidelberg,2010.127-138.
  • 6Jurczyk P,Agichtein E. Discovering authorities in question answer communities by using link analysis[A].Lisboa,Portugal,2007.919-922.
  • 7Jie Shen,Wen Shen,Xin Fan. Recommending experts in Q&A communities by weighted HITS algorithm[A].Chengdu,China,2009.151-154.
  • 8Liu Jing;Song Y I;Lin C Y.Competition-based user expertise score estimation[A]{H}北京,2011425-434.
  • 9Aditya P,Rosta F,Joseph A K. Early detection of potential experts in question answering communities[A].Girona,Spain,2011.231-242.
  • 10Aditya P,Joseph A K. Expert identification in community question answering:Exploring question selection bias[A].{H}Toronto,Canada,2010.1505-1508.

二级参考文献12

共引文献8

同被引文献127

  • 1郭碧坚,韩宇.同行评议制──方法、理论、功能、指标[J].科学学研究,1994,12(3):63-73. 被引量:79
  • 2孙茜.Web2.0的含义、特征与应用研究[J].现代情报,2006,26(2):69-70. 被引量:161
  • 3Alexa.The top ranked sites in references category [EB/OL]. [2014-12-21]. http://www. alexa. com/topsites/cate-gory/Top/Reference.
  • 4Ignatova K, Toprak C, Bernhard D, et al. Annotating question types in social Q&A sites[C]//Tagungsband des GSCL Symposiums’ Sprachtechnologie und eHumanities. 2009: 44-49.
  • 5Harper F M, Weinberg J, Logie J, et at. Question types in social Q&A sites[J/OL]. First Monday, 2010,15:7. [2014-07-05]. http://firstmondey. org/o]s/index. php/fm/article/view/2913/.
  • 6Pomerantz J. A linguistic analysis of question taxonomies[J]. Journal of the American Society for Information Science and Technology, 2005, 56(7): 715-728.
  • 7Qu B, Cong G, Li C, et al. An evaluation of classification models for question topic categorization[J] ? Journal of the American Society for Information Science and Technology, 2012,63(5):889-903.
  • 8Fan S, Wang X, Wang X, et al. Using hybrid kernel method for question classification in CQA[C]//Neural Information Processing. Berlin Heidelberg:Springer,2011 : 121-130.
  • 9Chan W, Yang W, Tang J, et al. Community question topic categorization via hierarchical kernelized classification [C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM, 2013: 959-968.
  • 10Bae K, Ko Y. An effective category classification method based on a language model for question category recommendation on a cQA service[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management. ACM, 2012: 2255-2258.

引证文献12

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部