期刊文献+

训练样本分布不均的KNN分类改进算法 被引量:3

The KNN Classification Improved Algorithm of the Training Sample Nonuniform Distribution
下载PDF
导出
摘要 分类是数据挖掘的重要组成部分,它根据类标号已知的数据建立模型,进而使用该模型来预测类标号未知的数据所属的类。KNN方法作为一种简单、有效、非参数的分类方法,在文本分类中得到广泛的应用,但是这种方法在训练样本的分布不均匀时会造成分类准确率的下降。针对KNN方法存在的这个问题,本文提出了一种基于相对距离的KNN分类方法,这种方法减少了边界点处测试样本的误判。实验结果显示,这种方法具有很好的性能。 Classification is an essential part of data mining. It builds a model according to the data whose class labels are known, and then uses this model to predict the classes of the data whose class labels are unknown. As a simple, effective and nonparametric classification method, KNN method is widely used in document classification. But KNN classifier may decrease the precision of classification because of the uneven density of training data. In this paper, a relative-distance method which solves problem mentioned above is presented. It decreases the wrong classification between the edge of classes. The experiment also shows that it has good performance.
作者 丁应逵
出处 《价值工程》 2014年第2期180-182,共3页 Value Engineering
关键词 KNN 相对距离 准确率 KNN relative-distance precision
  • 相关文献

参考文献10

二级参考文献32

  • 1[1]D D Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: The 10th European Conf on Machine Learning(ECML98), New York: Springer-Verlag, 1998. 4~15
  • 2[2]Y Yang, X Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, New York: ACM Press, 1999
  • 3[3]Y Yang, C G Chute. An example-based mapping method for text categorization and retrieval. ACM Trans on Information Systems, 1994, 12(3): 252~277
  • 4[4]E Wiener. A neural network approach to topic spotting. The 4th Annual Symp on Document Analysis and Information Retrieval (SDAIR 95), Las Vegas, NV, 1995
  • 5[5]R E Schapire, Y Singer. Improved boosting algorithms using confidence-rated predications. In: Proc of the 11th Annual Conf on Computational Learning Theory. Madison: ACM Press, 1998. 80~91
  • 6[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features. In: The 10th European Conf on Machine Learning (ECML-98). Berlin: Springer, 1998. 137~142
  • 7[7]S O Belkasim, M Shridhar, M Ahmadi. Pattern classification using an efficient KNNR. Pattern Recognition Letter, 1992, 25(10): 1269~1273
  • 8[8]V E Ruiz. An algorithm for finding nearest neighbors in (approximately) constant average time. Pattern Recognition Letter, 1986, 4(3): 145~147
  • 9[9]P E Hart. The condensed nearest neighbor rule. IEEE Trans on Information Theory, 1968, IT-14(3): 515~516
  • 10[10]D L Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans on Systems, Man and Cybernetics, 1972, 2(3): 408~421

共引文献117

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部