期刊文献+

基于光谱特征的监督分类方法在黄河口湿地的应用比较 被引量:3

The Comparison of Application of Supervised Classification Method Based on Spectral Characteristics in Yellow River Estuary Wetland
下载PDF
导出
摘要 使用基于光谱特征的六种常用监督分类方法,对同景黄河口湿地高光谱CHRIS影像进行分类,后对分类结果进行对比,进而分析并总结六种方法分类精度之间的差异和各自的特点。 Using six kinds of commonly used supervised classification method based on spectral characteristics to classify the Yellow River Estuary wetland hyperspectral CHRIS image, after comparing with the results of classification, and then it analyzes and summarizes the differences and their respective characteristics of classification accuracy between the six methods.
出处 《价值工程》 2014年第2期184-186,共3页 Value Engineering
关键词 遥感 高光谱 监督分类 最大似然法 湿地 remote sensing hyperspectral supervised classification maximum likelihood method wetland
  • 相关文献

参考文献6

  • 1黄立贤,沈志学.高光谱遥感图像的监督分类[J].地理空间信息,2011,9(5):81-83. 被引量:12
  • 2张兵;高连如.高光谱图像分类与目标探测[M]{H}北京:科学出版社,2011.
  • 3Corinna Cortes,Vladimir Vapnik. Support-vector networks[A].1995.273-297.
  • 4李小娟;刘晓萌;胡德勇.ENVI遥感影像处理[M]{H}北京:中国环境科学出版社,2008322-347.
  • 5Chein-I Chang. Hyperspectral Data Exploitation Theory and Applications[M].Wiley-Interscience,2007.
  • 6R.J. Zomer,A. Trabucco,S.L. Ustin. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing[J].{H}Journal of Environmental Management,2009.2170-2177.

二级参考文献13

  • 1刘正军,王长耀,张继贤.基于小波与遗传算法的特征提取与特征选择(英文)[J].遥感学报,2005,9(2):176-185. 被引量:7
  • 2王旭红,肖平,郭建明.高光谱数据降维技术研究[J].水土保持通报,2006,26(6):89-91. 被引量:12
  • 3韩建峰,杨哲海.组合分类器及其在高光谱影像分类中的应用[J].测绘科学技术学报,2007,24(3):231-234. 被引量:9
  • 4李小娟,刘晓萌,胡德勇,等.ENVI遥感影像处理[M].北京:中国环境科学出版社,2008,9:322-347.
  • 5Helmi Z M, Affendi Suhaili and Shattri Mansor. The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Net- work and Decision Tree Classifiers in Hyperspectral Image Analysis[J]. Journal of Computer Science, 2007, 3 (6): 419-423.
  • 6Jia X and Richards J A.Segmented Principal Components Trans- formation Forefficient Hyperspectral Remote-Sensing Image Display and Classification[J]. IEEE Transaetions on Geoscience and Remote Sensing, 1999,37(1):538-542.
  • 7M and Tatnall A R L. Introduction to Neural Networks in Remote Sensing[J]. International Journal of Remote Sensing, 1997, 11 : 699-709.
  • 8Weeks P J D and Gaston K J. Image Analysis, Neural Networks and the Taxonomic Impediment to Biodiversity Studies[J]. Biodi- versity and Conservation, 1997, 6:263-274.
  • 9Foody G M and Mathur A. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines [J]. Transac- tions On Geoscience And Remote Sensing, 2004, 42:1335-1343.
  • 10Osuna E,Fretmd R, Girosi E Improved Training Algorithm for Support Vector Machines[J]. Proceedings of Workshop on Neural Networks for Signal Processing,1997,10:500-505.

共引文献11

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部