期刊文献+

光通信中一种准循环非二进制LDPC码的新颖构造方法 被引量:2

A novel construction method of quasi-cyclic non-binary LDPC codes in optical communication
原文传递
导出
摘要 在对目前普遍采用的非二进制低密度奇偶校验(NB-LDPC)码校验矩阵的准循环构造方法进行深入研究的基础上,提出了一种基于有限域的NB-LDPC码的立体构造方法,在构建基于有限域的基础矩阵后,运用立体扩展的方式构成循环子矩阵,最终构造出具备准循环特性的非二进制校验矩阵。通过对采用立体构造法构造的NB-LDPC码的性能仿真发现,与基于GF(29)的RS(511,305)相比,本文构造的NB-LDPC码在误比特率(BER)为10-7时可以增加3.3dB的净编码增益(NCG);在BER为10-6时,本文构造的LDPC码与采用传统准循环方式构造的二进制LDPC码、随机构造的二进制LDPC码、基于有限域构造的32进制准循环LDPC码和基于欧式几何构造的64进制的循环LDPC码比较,分别多获得了0.56、0.56、0.03和0.83dB的NCG。通过对本文构造的NB-LDPC码性能仿真发现,这类具有高度结构化的NB-LDPC码不仅具备准循环特性,有利于硬件实现,同时在中短码长情况时展现出较好的纠错性能。 This paper presents a construction met hod of quasi-cyclic non-binary low density parity-check (NB-LDPC) code based on the finite field three-dimensional construction.After construction of base matrix based on the finite field,a cyclic matrix is constructed with the method of three-dimensional exte nsion.Finally,non-binary parity check matrix with quasi-cyclic feature is constructed.Compared wit h the GF(29)-based RS(511,5) and NB-LDPC code constructed by the three-dimensional construction can increase 3.3dB net code gain (NCG) at the bit error rate (BER) of 10^-7.Compare d with the binary Q C-LDPC codes constructed by the traditional way, the binary LDPC codes randomly constructed,the 32-ary QC-LDPC codes construct ed based on finite fields and the 64-ary cyclic LDPC codes constructed based on Euclidean geometry ,the NB-LDPC code constructed by the three-dimensional construction can increase 0.56dB,0.56dB, 0.03dB and 0.83dB NCG respectively at the BER of 10^-7.Through performan ce simulation of the NB-LDPC code constructed based on this three-dimensional construction,it shows that such an NB-LDPC code not only has quasi-cyclic feat ure,conducive to hardware implementation,but also shows better error corre ction performance in the short code length.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第1期56-60,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61071117 61171158 61275077) 重庆市科委项目(2009BB2285 2010BB2413 2010BB2409) 重庆市教委(KJ110519 KJ110527)资助项目
关键词 准循环非二进制低密度奇偶校验(NB—LDPC)码 立体构造法 误比特率(BER) quasi-cyclic non-binary low density parity check (ND LDPC) codes three-dimensional con-struction hit error rate (BER)
  • 相关文献

参考文献15

  • 1Gallager R G. Low density parity check codes[J]. IRETrans. Inform. Theory, 1962,8(1) :21-28.
  • 2Davey M C,MacKay D J C. Low-density parity checkcodes over GF(q)[J]. IEEE Commun. Lett.,1998,2(6):165-167.
  • 3Song S M,Zeng L Q,Lin S,et al. Algebraic constructionof nonbinary quasi-cyclic LDPC codes [A]. InternationalSymposium on Information Theory[C]. 2006,83-87.
  • 4YIN Yong-qiang,LIU Xing-qiang,LIANG Chu-long. Designof nonbinary LDPC cycle codes based on cycle entropy[A]. International Conference on Electronics* Communi-cations and Control (ICECC)[C]. 2011,2014-2016.
  • 5杨民,张文彦,钟杰,吴杰.准循环多进制LDPC码构造[J].电子与信息学报,2013,35(2):297-302. 被引量:10
  • 6CHEN Chao, BAI Bao-ming, LI Zhuo,et al. Nonbinary cy-clic LDPC codes derived from idempotents and modulargolomb rulers[j]. IEEE Transactions on Communications,2012,60(3):661-668.
  • 7ZHANG Yan-jing, ZHANG Li-jun. Construction of short bi-nary QC-LDPC codes: cyclotomic coset approach [A].IEEE 11th International Conference on Signal Processing(ICSP)[C]. 2012,2:1439-1442.
  • 8袁建国,刘文龙,黄胜,王永.光通信中基于有限域加群的一种QC-LDPC码[J].光电子.激光,2013,24(1):75-78. 被引量:10
  • 9袁建国,王望,汤彬,梁天宇,王永.光通信系统中基于伽罗华域乘群的QC-LDPC码的一种新颖构造方法[J].光电子.激光,2012,23(7):1304-1308. 被引量:8
  • 10Lingjun Kong,Yang Xiao.Design of good QC-LDPC codes without small girth in the p-plane[J].Journal of Systems Engineering and Electronics,2011,22(2):183-187. 被引量:4

二级参考文献61

  • 1袁建国,叶文伟,毛幼菊.光通信系统中基于LDPC码的SFEC码型研究[J].光电子.激光,2009,20(11):1450-1453. 被引量:10
  • 2A. Orlitsky, K. Viswanathan, J. Zhang. Stopping set distribution of LDPC code ensembles. IEEE Trans. on Information Theory, 2005, 51(3): 929-953.
  • 3M. K. Krishnan, P. Shankar. On the complexity of finding stop- ping set size in tanner graphs. Proc. of 40th Annual Conference on Information Sciences and Systems, 2006: 157-158.
  • 4K. Murali, L. Krishnan, S. Chandran. Hardness of approxima- tion results for the problem of finding the stopping distance in tanner graphs. Proc. of 26th International Conference on Foun- dations of Software Technology and Theoretical Computer Sci- ence, 2006: 69-80.
  • 5R. G. Gallager. Low-density parity-check codes. IRE Trans. on Information Theory, 1962, 8(1): 21-28.
  • 6T. Richardson, R. Urbanke. The capacity of low-density parity check codes under message-passing decoding. IEEE Trans. on Information Theory, 2001, 47(2): 599-618.
  • 7R. M. Tanner, D. Sridhara, A. Sridharan, et al. LDPC block and convolutional codes based on circulant matrices. IEEE Trans. on Information Theory, 2004, 50(12): 2966-2984.
  • 8Y. Xiao, H. H. Lee. Construction of good quasi-cyclic LDPC codes. Proc. of IET International Conference on Wireless Mo- bile and Multimedia Networks, 2006: 660-663.
  • 9M. E C. Fossorier. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. on Informa- tion Theory, 2004, 50(8): 1788-1792.
  • 10J. Fan, Y. Xiao. A method of counting the number of cycles in LDPC codes. Proc. of the 8th International Conference on Signal Processing, 2006: 2183-2186.

共引文献28

同被引文献19

  • 1GAI&AGER R G. Low-density parity-check codes [ J ]. IRE Transactions on hfformation Theory,1962,8(2) :21-28.
  • 2DAVEY M C, MACKAY D. Low-density parity check codes over GF (q) [ J 1- 1EEE Communications Letters, 1998,2(6) :165-167.
  • 3MYUNG S,YANG K,KIM J. Quasicyclic LDPC codes for fast encoding[ J ]. IEEE Transactions on Information The- ory,2005,51 ( 8 ) : 2894-2901.
  • 4PENG R H,CHEN R R. Design of non-binary quasi-cyclic LDPC cycle codes [ C ]//l'oceedings of 2007 IEEE Informa- tion Theory Workshop. California: IEEE ,2007 : 13-18.
  • 5LIN S, SONG S M, LAN L. Algebraic constructions of non -binary quasi-cyclic LDPC codes [ C l//Proceedings of 2006 IEEE International Conference on Communications, Circuits and Systems. Guilin : IEEE,2006 : 1303-1308.
  • 6ZHOU B, KANG J Y, HUANG Q, et al. High performance non-binary quasi-cyclic LDPC codes on Euclidean geom- etries[ J]. IEEE Transactions on Communications,2009, 57(5) : 1298-1311.
  • 7ZENG L Q,LAN L,TA1 Y Y ,et al. Construction of non- binary cyclic,quasi and regular LDPC codes: a finite ge- ometry approach [ J ]. IEEE Transactions on Communica- tions,2008,56(3) :378-387.
  • 8SONG S M,ZHOU B,LIN S,et al. A unified approach to the construction of binary and non-binary quasi- cyclic LDPC codes based on finite fields [ J ]. IEEE Transactions on Communications,2009,57 ( 1 ) : 84-93.
  • 9CHEN C,BAI B M. Construction of non-binary quasi- cyclic LDPC cycle codes based on singer perfect differ- ence sets [ J ]. IEEE Communications Letters, 2010, 14 (2) : 181-183.
  • 10JIANG X,LEE M H. 'Large girth non-binary LDPC codes based on finite fields and Euclidean geometries [ J ]. IEEE Signal Processing Letters ,2009,16(6) :521-524.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部