期刊文献+

固体冲击模拟的轴对称光滑粒子法 被引量:2

Axisymmetric smoothed particle hydrodynamics method for solid impact simulation
下载PDF
导出
摘要 为提高光滑粒子(Smoothed Particle Hydrodynamics,SPH)法模拟轴对称固体冲击的计算效率,将三维模型简化到二维轴对称平面上;为避免在构造轴对称SPH法过程中对光滑函数进行环向积分,在传统SPH法的基础上通过直接离散的方式,利用导数关系式与SPH法的近似特性,构造在轴对称柱坐标系下具有对称形式的粒子近似方程组.以泰勒杆冲击为例,将该方法的计算结果与实验以及商业软件得到的结果进行对比分析,验证所构造的轴对称SPH法的可靠性和正确性. To improve the calculation efficiency of axisymmetric solid impact using Smoothed Particle Hydrodynamies(SPH) method, the 3D model is simplified to a 2D symmetric plane; to avoid the circumferential integration of smooth function during building axisymmetric SPH method, the approximate equations with symmetry form under axisymmetric cylindrical coordinates are built by the direct discretizaion based on the traditional SPH method and the approximate properties between the derivative relationship and the SPH method. The Taylor bar impact is taken as an example. The stability and precision of the new axisymmetric SPH method are verified by the numerical results which are compared with the experiment results and the results obtained by commercial software.
出处 《计算机辅助工程》 2013年第6期84-89,共6页 Computer Aided Engineering
基金 国家自然科学基金(11102065) 高等学校博士学科点专项科研基金新教师类项目(20110161120038)
关键词 光滑粒子法 轴对称固体冲击 数值模拟 计算效率 泰勒杆冲击 smoothed particle hydrodynamics method axisymmetric solid impact numerical simulation calculation efficiency Taylor bar impact
  • 相关文献

参考文献12

  • 1GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Mon Not R Astron Soc, 1977, 181(1) : 375-389.
  • 2LUCY L B. Numerical approach to testing the fission hypothesis[J]. Astrono J, 1977, 82(12) : 1013-1024.
  • 3LIBERSKTY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response[ J]. J Comput Phys, 1993, 109(1 ) : 67-75.
  • 4BROOKSHOAW L. Smooth particle hydrodynamics in cylindrical coordinates [ J]. ANZIAM J, 2003 (44) : 114-139.
  • 5OMANG M, B~RVE S, TRULSEN J. SPH in spherical and cylindrical coordinates[J]. J Comput Phys, 2006, 213( 1 ) : 391-412.
  • 6GARCIA-SENZ D, RELANO A, CABEZON RM, et al. Axisymrnetric smoothed particle hydrodynamics with self-gravity[ J]. Mon Not R Astron Soc, 2009, 392( 1 ): 346-360.
  • 7PETSCHEK A G, LIBERSKY L D. Cylindrical smoothed particle hydrodynamics[ J]. J Comput Phys, 1993, 109 (1) : 79-83.
  • 8张刚明,王肖钧,王元博,王吉,王峰.高速碰撞数值计算中的光滑粒子法[J].计算物理,2003,20(5):447-454. 被引量:20
  • 9SEO Songwon, MIN Oakkey. Axisymmetrie SPH simulation of elasto-plastic contact in the low velocity impact[J]. Comput Phys Commun, 2006, 175(9) : 583-603.
  • 10BATRA R C, ZHANG G M. Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test [ J ]. J Comput Phys, 2008, 227 (3) : 1962-1981.

二级参考文献6

  • 1Chen J K, Beraun J E, Jih C. J. An improvement for tensile instability in smoothed particle hydrodynamics [ J ].Comput Mech, 1999,23:279 - 287.
  • 2Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis [ J]. J Comput Phys,1995,116:123 - 134.
  • 3Gust W H. High impact deformation of metal cylinders at elevated temperatures [ J ]. J Appl Phys, 1982,53 (5) : 3566- 3575.
  • 4Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constant [ J ]. J Appl Phy,1988,64(8) :3901 - 3910.
  • 5Libersky L D, Petschek A G. High strain Lagranglan hydrodynamics:a three-dimensional SPH code for dynamic material response [J]. J Comput Phys, 1993,109:67- 75.
  • 6Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations [J]. Comput Mech Appl Mech Eng,1996,139:347 - 373.

共引文献19

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部