摘要
对欠驱动飞行器,精确的姿态控制是实现精确的位置控制的前提。当前,几何控制方法利用位形流形描述姿态运动,并用微分流形的几何分析方法获得全局有效的控制律,从而有效避免传统方法使用局部坐标,引起的奇异及复杂度增加问题。但是,几何控制方法是基于精确模型的,鲁棒性较差。为此,为改善几何控制方法的鲁棒性,利用滑模对干扰不敏感的优点,设计了一种欠驱动飞行器的鲁棒姿态控制方法,并证明了控制器在有界干扰存在时能保证系统全局渐近稳定。仿真实验表明,该控制器能保证系统快速跟踪期望信号,并在周期有界干扰作用下抑制干扰并稳定工作。
The precision of angle control is necessary for increasing the performance of position control for under-actuated aircraft. The geometric control theory (GCT) describes the rotation in configuration manifolds globally, which are analyzed using differential geometry method for an effective control law. GCT avoids singularity and complexity increasing problems. However, the robustness of GCT is poor relatively cause of it requires accurate system model. Therefore, we provide a new robust control strategy using GTC, and we present global asymptotic stability considering the bounded disturbance. We apply the new control strategy to under-actuated aircraft attitude stabilization. Results of the simulation shows, the aircraft can track desire attitude commends and maintain stable in periodic bounded disturbances.
关键词
几何控制
鲁棒控制
姿态控制
geometric control theory
robust control
attitude stabilization