期刊文献+

基于几何控制理论的欠驱动飞行器姿态鲁棒控制方法

Robust control strategy using geometric control theory applied to under-actuated aircraft attitude stabilization
下载PDF
导出
摘要 对欠驱动飞行器,精确的姿态控制是实现精确的位置控制的前提。当前,几何控制方法利用位形流形描述姿态运动,并用微分流形的几何分析方法获得全局有效的控制律,从而有效避免传统方法使用局部坐标,引起的奇异及复杂度增加问题。但是,几何控制方法是基于精确模型的,鲁棒性较差。为此,为改善几何控制方法的鲁棒性,利用滑模对干扰不敏感的优点,设计了一种欠驱动飞行器的鲁棒姿态控制方法,并证明了控制器在有界干扰存在时能保证系统全局渐近稳定。仿真实验表明,该控制器能保证系统快速跟踪期望信号,并在周期有界干扰作用下抑制干扰并稳定工作。 The precision of angle control is necessary for increasing the performance of position control for under-actuated aircraft. The geometric control theory (GCT) describes the rotation in configuration manifolds globally, which are analyzed using differential geometry method for an effective control law. GCT avoids singularity and complexity increasing problems. However, the robustness of GCT is poor relatively cause of it requires accurate system model. Therefore, we provide a new robust control strategy using GTC, and we present global asymptotic stability considering the bounded disturbance. We apply the new control strategy to under-actuated aircraft attitude stabilization. Results of the simulation shows, the aircraft can track desire attitude commends and maintain stable in periodic bounded disturbances.
出处 《战术导弹控制技术》 2013年第4期1-4,共4页
关键词 几何控制 鲁棒控制 姿态控制 geometric control theory robust control attitude stabilization
  • 相关文献

参考文献10

  • 1Yang S, Kunqin L, Shi J. Design and simulation of the lon- gitudinal autopilot of UAV based on self-adaptive fuzzy pid control [ C]. Beijing, China: IEEE Computer Society, 2009.
  • 2宋祥,唐胜景,郭杰,等.基于遗传算法的无人机横侧向模糊控制律设计:中国2012年飞行力学学术年会[C].腾冲,云南:2012,427-432.
  • 3李俊,李运堂.四旋翼飞行器的动力学建模及PID控制[J].辽宁工程技术大学学报(自然科学版),2012,31(1):114-117. 被引量:159
  • 4李光春,王璐,王兆龙,许德新.基于四元数的四旋翼无人飞行器轨迹跟踪控制[J].应用科学学报,2012,30(4):415-422. 被引量:13
  • 5Bullo F, Lewis A D. Geometric Control of Mechanical Systems [ M ] New York-Heidelberg-Berlin: Springer- Verlag, 2004.
  • 6Geometric Tracking Control of the Attitude Dynamics of a Rigid Body on SO (3) [ J ].
  • 7Taeyoung L, Leoky M, Mcclamroch N H. Geometric Tracking Control of a Quadrotor UAV on SE ( 3 ) [ C ]. Piscataway, NJ, USA: IEEE, 2010.
  • 8Lee T, Leok M, Mcclamroch N H. Geometric tracking control of a quadrotor UAV for extreme maneuverability [ C]. Milano, Italy: IFAC Secretariat, 2011.
  • 9Taeyoung L, Leoky M, Mcclamroch N H. Geometric tracking control of a quadrotor UAV on SE(3) [ C]. 2010.
  • 10Liu C, Tang S, Yang S, et al. Fuzzy sliding-mode con- trol for quad-rotor trajectory tracking [ C ]. Guangzhou, China: Trans Tech Publications, 2013.

二级参考文献26

  • 1董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086. 被引量:33
  • 2BROCKETT R W. Asymptotic stability and feed- back stabilization [C]//Differential Geometric Con- trol Theory. Burkhauser, Boston, 1983: 181-191.
  • 3KIM J, KANG M S, PARK S. Accurate modeling and robust hovering control for a quad-rotor VTOL Air- craft [J]. Journal of Intelligent ~ Robotic Systems, 2010, 57(1): 9-26.
  • 4MATKO O, MARINA P, STJEPAN B. Hybrid fly-by- wire quadrotor controller [C]//IEEE International Symposium on Industrial Electronics (ISIE), Bari, Italy, 4-7 July 2010: 202-207.
  • 5WASLANDER S L, HOFFMANN G M. Multi-agent quadrotor testbed control design integral sliding mode vs. reinforcement learning [C]//IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2-6 August 2005: 3712-3717.
  • 6LARA D, ROMERO G, SANCHEZ A, LOZANO R, GUERRERO A. Robustness margin for attitude con- trol of a four rotor mini-rotorcraft: case of study lJ]. Mechatronics, 2010, 20(1): 143-152.
  • 7BOUADI H, BOUCHOUCHA M, TADJINE M. Sliding mode control based on backstepping approach for an UAV type-quadrotor [J]. International Journal of Applied Mathematics and Computer Sciences, 2008, 4(1): 12-17.
  • 8XU R, OZGUNER U. Sliding mode control of a class of underactuated systems [J]. Automatica, 2008, 44(1): 233-241.
  • 9RAFFO G V, ORTEGA M G, RUBIO F R. An in- tegral predictive/nonlinear H∞ control structure for a quad-rotor helicopter [J]. Automatica, 2010, 46(1): 29-39.
  • 10PANTELEY E, LORIA A. On global uniform asymp- totic stability of nonlinear time-varying system in cascade [J]. System and Control Letters, 1998, 33(2): 131-138.

共引文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部