期刊文献+

一级倒立摆SIRMs动态权重模糊推理算法仿真

Simulation of SIRMs dynamical weight fuzzy inference algorithm in level one inverted pendulum
下载PDF
导出
摘要 为解决倒立摆采用常规模糊控制算法,其推理规则数目随输入变量成指数增长的问题,对直线一级倒立摆设计了基于SIRMs和动态连接权重模型的模糊控制器,该控制器将倒立摆的四输入变量的模糊控制化成单维模糊控制问题来解决,大大减少了模糊规则数。仿真结果表明,该控制算法能够较好地完成倒立摆的运动控制,具有很强的鲁棒性和动静态特性。 To solve the problem that the number of inference rules increases exponentially with the input variables in the classic fuzzy control algorithm for the inverted pendulum, a fuzzy controller is designed for the linear-primary inverted pendulum, based on SIRMs and linear weighting models. The four input variables of the fuzzy controller are simplified to the one-dimensional one, so the number of fuzzy rules are reduced greatly. Simulation result: indicates that the fuzzy control algorithm can meet the needs of the motion control of inverted pendulum, and is with strong robustness and dynamic- static performances.
出处 《长春工业大学学报》 CAS 2013年第6期631-634,共4页 Journal of Changchun University of Technology
基金 吉林省自然科学基金资助项目(20101505)
关键词 一级倒立摆 SIRMs 动态权重 模糊控制 primary inverted pendulum SIRMs dynamic weight fuzzy control.
  • 相关文献

参考文献9

  • 1李红伟.单级倒立摆的简化模糊控制及仿真研究[J].控制工程,2010,17(6):769-773. 被引量:5
  • 2郑刚,张慧慧,费仁元,杨建武,孙树文,李屹.基于SIRM的倒立摆模糊控制器[J].制造业自动化,2003,25(7):25-26. 被引量:1
  • 3J Yi, N Yubazaki. Stabilization fuzzy control of in- verted pendulum systems[J]. Artificial Intelligence in Engineering, 2000,14 : 153-163.
  • 4M Mizumoto. Product-sum-gravity method: fuzzy singleton-type reasoning method = simplified fuzzy reasoning method [C]//Proceedings of FUZZ- IEEE' 96,1996,3(20) : 98-102.
  • 5Jianqiang Yi, Naoyoshi Yubazaki, Kaoru Hirota. A proposal of SIRMs dynamically connected fuzzy in- ference model for plural input fuzzy control [J ]. Fuzzy Sets and Systems, 2000,125 : 79- 92.
  • 6N Yubazaki, J Yi, M Otani, et al. SIRMs dynami cally connected fuzzy inference model and its appli cations[C]//Proceedings of IFSA' 97,1997,3 : 410 415.
  • 7N Yubazaki, J Yi, K Hirota. SIRMs(Single Input Rule Modules)connected fuzzy inference model[J]. J. Adv. Comput. Intell,1997(1):23-30.
  • 8李红伟,刘清友.基于遗传算法和简化模糊控制的倒立摆系统设计[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation ' 2010,2010 : 120-124.
  • 9张淑霞,马跃,白羽,张春喜.基于模糊控制的旋转型双支点倒立摆系统[J].长春工业大学学报,2007,28(1):109-113. 被引量:4

二级参考文献23

  • 1张乃尧,Ebert,C.倒立摆的双闭环模糊控制[J].控制与决策,1996,11(1):85-88. 被引量:53
  • 2Biling S A, Tsang K M. Spectral analysis for nonlinear systerms. Part:Interpretation of nonlinear frequency response functon[J]. Mechanical Systems and Signal Processing, 1989,3 (4) :341-359.
  • 3Zhang H, Billings S A. Analysing the transfer function of nonlinear systerms in the frequency domain [ J ]. J Mechanism Systerms and SignalProcessing,.1993, 7(5):531-550.
  • 4Yi J, Yttbazaki N. Stabilization fuzzy control of invert-ed pendulum systerm[J]. Aaificial Intelligence in Engi-neering, 2000,14( 1 ) : 153-163.
  • 5Yi G, Yubazaki N, Jorpta L Stabilization fuzzy control of inverted pendulum systems [ J]. Artificial Intelligence in Engineering, 2000,12 (2): 153-163.
  • 6KANDADAI R M, TIEN J M. On a fuzzy-neural hierarchical controller with a self-generating knowledge base[A].SMC' 96[C]. 1996,4: 2625-2630.
  • 7KYUNG K H, LEE B H. Fuzzy rule base derivation using neural network-based fuzzy logic controller by self-learning[A]. Proc. IECON' 93[C], 1993,1: 435-440.
  • 8FURUTA K, YAMAKITA M, KOBAYASHI S, Swing up control of inverted pendulum[A], Proc. IECON' 91 [C], 1991:2193-2198.
  • 9MORI S, NISHIHARA H. FURUTA K. Control of unstable mechanical system--control of pendulum[J]. Internat.J.Control, 1976, 23 (5): 630-692.
  • 10WEI Q, DAYAWANSA W P, LEVING W S.Nonlinear controller for an inverted pendulum having restricted travel[J], Automatica, 1995, 31 (6): 841-850.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部