期刊文献+

基于HMM的交叉口交通事件预测研究 被引量:2

Traffic Incident Prediction on Intersections Based on HMM
下载PDF
导出
摘要 交叉口是一个交通事故多发区,除了交叉口设计复杂外,更重要的是交叉口车辆行驶情况比较杂乱,使得交叉口交通冲突的检测难度增加.本文以淮安市淮海南路与解放路交叉口为例,根据车辆运行与相位配时总结在该四相位控制的交叉口具有冲突的两辆车的相对运动情况,在车辆跟踪的基础上对具有冲突的车辆进行运动矢量量化,采用HMM(隐马尔可夫模型)对该交叉口的交通冲突进行分类,并通过实验验证该算法能对正常交通下的车辆运行状态进行冲突分类.通过冲突的检测可以提前预测发生在交叉口处的交通事故(如碰撞、追尾、突然停车等)和危险状态. The intersection is an area where many accidents occur. Reasons for accidents are due to complicated intersection designs and the congested travel conditions. For these reasons, traffic incident detection is more complicated. This paper uses the intersections of Huaihai South Road and Jiefang Road as an example. According to the vehicle operation and phase timing, the situations of two vehicle's relative movement on four phase intersections are summarized. The motion vectors of the conflicting vehicle are quantized on the basis of vehicle tracking. Then, the HMM is used to classify the traffic conflicts of the intersection. Finally, numerical experiments verify that the algorithm is able to classify the conflict when the traffic is normal. Furthermore, the algorithm can forecast the traffic accidents (such as bumping, tandem, and stop) which occurred in the intersection.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2013年第6期52-59,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(51078085)
关键词 智能交通 事件预测 隐马尔可夫模型 交叉口 交通冲突 intelligent transportation incident detection hidden Markov model intersection traffic conflict
  • 相关文献

参考文献8

  • 1Veeraraghavan H,Masoud O,Papanikolopoulos N P. Computer vision algorithms for intersection monitoring[J].Intelligent Transportation Systems IEEE Transactions on,2003,(02):78-89.doi:10.1109/TITS.2003.821212.
  • 2Kamijo S,Matsushita Y,Ikeuchi K. Traffic monitoring and accident detection at intersections[J].Intelligent Transportation Systems IEEE Transactions on,2000,(02):108-118.doi:10.1109/6979.880968.
  • 3Cucchiara R,Piccardi M,Mello P. Image analysis and rule-based reasoning for a traffic monitoring system[J].Intelligent Transportation Systems IEEE Transactions on,2000,(02):119-130.doi:10.1109/6979.880969.
  • 4Jung Y,Lee K,Ho Y. Co'ntent-based event retrieval using semantic scene interpretation for automated traffic surveillance[J].Intelligent Transportation Systems IEEE Transactions on,2001,(03):151-163.
  • 5Oikawa K,Kaneko Y,Matano M. Study of abnormal incident detection aimed at automatic wide-Area traffic flow monitoring[A].Washington D C:IEEE,2002.767-770.
  • 6Xie D,Hu W,Tan T,et at. A multi-object tracking system for surveillance video analysis[A].Cambridge,United Kingdom:IEEE,2004.767-770.
  • 7Zhang Y,Brady M,Smith S. Segmentation of brain Mr Images through a hidden Markov random field model and the expectation-maximization algorithm[J].Medical Imaging IEEE Transactions on,2001,(01):45-57.
  • 8Salim F D,Loke S W,Rakotonirainy A. Collision pattern modeling and real-time collision detection at road intersections[J].Proceeding of IEEE ITSC,2007.161-166.

同被引文献37

引证文献2

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部